Skip to main content
Log in

Accumulation of mono-reduced [Ir(piq)2(LL)] photosensitizers relevant for solar fuels production

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of nine [Ir(piq)2(LL)]+.PF6 photosensitizers, where piqH = 1-phenylisoquinoline, was developed and investigated for excited-state electron transfer with sacrificial electron donors that included triethanolamine (TEOA), triethylamine (TEA) and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) in acetonitrile. The photosensitizers were obtained in 57–82% yield starting from the common [Ir(piq)2µ-Cl]2 precursor and were all characterized by UV–Vis absorption as well as by steady-state, time-resolved spectroscopies and electrochemistry. The excited-state lifetimes ranged from 250 to 3350 ns and excited-state electron transfer quenching rate constants in the 109 M–1 s–1 range were obtained when BIH was used as electron donor. These quenching rate constants were three orders of magnitude higher than when TEA or TEOA was used. Steady-state photolysis in the presence of BIH showed that the stable and reversible accumulation of mono-reduced photosensitizers was possible, highlighting the potential use of these Ir-based photosensitizers in photocatalytic reactions relevant for solar fuels production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nocera, D. G. (2009). Personalized energy: The home as a solar power station and solar gas station. Chemsuschem, 2, 387–390. https://doi.org/10.1002/cssc.200900040

    Article  CAS  PubMed  Google Scholar 

  2. Nocera, D. G. (2009). Chemistry of Personalized Solar Energy. Inorganic Chemistry, 48, 10001–10017. https://doi.org/10.1021/ic901328v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National academy of Sciences of the United States of America, 103, 15729–15735. https://doi.org/10.1073/pnas.0603395103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armaroli, N., & Balzani, V. (2016). Solar electricity and solar fuels: Status and perspectives in the context of the energy transition. Chemistry-A European Journal, 22, 32–57. https://doi.org/10.1002/chem.201503580

    Article  CAS  PubMed  Google Scholar 

  5. Ciamician, G. (1912). The photochemistry of the future. Science, 36, 385–394. https://doi.org/10.1126/science.36.926.385

    Article  CAS  PubMed  Google Scholar 

  6. Meyer, T. J. (1989). Chemical Approaches to Artificial Photosynthesis. Accounts of Chemical Research, 22, 163–170. https://doi.org/10.1021/ar00161a001

    Article  CAS  Google Scholar 

  7. Hammarström, L., & Styring, S. (2011). Proton-coupled electron transfer of tyrosines in photosystem ii and model systems for artificial photosynthesis: The role of a redox-active link between catalyst and photosensitizer. Energy & Environmental Science, 4, 2379–2388. https://doi.org/10.1039/C1EE01348C

    Article  Google Scholar 

  8. Gust, D., Moore, T. A., & Moore, A. L. (2013). Artificial photosynthesis. Theoretical and Experimental Plant Physiology, 25, 182–185.

    Article  Google Scholar 

  9. Eberhart, M. S., et al. (2018). Completing a charge transport chain for artificial photosynthesis. Journal of the American Chemical Society, 140, 9823–9826. https://doi.org/10.1021/jacs.8b06740

    Article  CAS  PubMed  Google Scholar 

  10. Concepcion, J. J., House, R. L., Papanikolas, J. M., & Meyer, T. J. (2012). Chemical approaches to artificial photosynthesis. Proceedings of the National academy of Sciences of the United States of America, 109, 15560–15564. https://doi.org/10.1073/pnas.1212254109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang, D., et al. (2019). Molecular Photoelectrode for water oxidation inspired by photosystem II. Journal of the American Chemical Society, 141, 7926–7933. https://doi.org/10.1021/jacs.9b02548

    Article  CAS  PubMed  Google Scholar 

  12. Sampaio, R. N., Troian-Gautier, L., & Meyer, G. J. (2018). A Charge-separated state that lives for almost a second at a conductive metal oxide interface. Angewandte Chemie, 130, 15616–15620. https://doi.org/10.1002/ange.201807627

    Article  Google Scholar 

  13. Shan, B., et al. (2019). Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nature Energy, 4, 290–299. https://doi.org/10.1038/s41560-019-0345-y

    Article  CAS  Google Scholar 

  14. Cancelliere, A. M., et al. (2020). Efficient trinuclear Ru(ii)–Re(i) supramolecular photocatalysts for CO2 reduction based on a new tris-chelating bridging ligand built around a central aromatic ring. Chemical Science, 11, 1556–1563. https://doi.org/10.1039/C9SC04532E

    Article  CAS  PubMed  Google Scholar 

  15. Sampaio, R. N., Grills, D. C., Polyansky, D. E., Szalda, D. J., & Fujita, E. (2020). Unexpected roles of triethanolamine in the photochemical reduction of CO2 to formate by ruthenium complexes. Journal of the American Chemical Society, 142, 2413–2428. https://doi.org/10.1021/jacs.9b11897

    Article  CAS  PubMed  Google Scholar 

  16. Morris, A. J., Meyer, G. J., & Fujita, E. (2009). Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Accounts of Chemical Research, 42, 1983–1994. https://doi.org/10.1021/ar9001679

    Article  CAS  PubMed  Google Scholar 

  17. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R., & Gray, H. B. (2009). Hydrogen evolution catalyzed by cobaloximes. Accounts of Chemical Research, 42, 1995–2004. https://doi.org/10.1021/ar900253e

    Article  CAS  PubMed  Google Scholar 

  18. Teets, T. S., & Nocera, D. G. (2011). Photocatalytic hydrogen production. Chemical Communications, 47, 9268–9274. https://doi.org/10.1039/C1CC12390D

    Article  CAS  PubMed  Google Scholar 

  19. Heyduk, A. F., & Nocera, D. G. (2001). Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science, 293, 1639–1641. https://doi.org/10.1126/science.1062965

    Article  CAS  PubMed  Google Scholar 

  20. Esswein, A. J., & Nocera, D. G. (2007). Hydrogen production by molecular photocatalysis. Chemical Reviews, 107, 4022–4047. https://doi.org/10.1021/cr050193e

    Article  CAS  PubMed  Google Scholar 

  21. Fihri, A., et al. (2008). Cobaloxime-based photocatalytic devices for hydrogen production. Angewandte Chemie International Edition, 47, 564–567. https://doi.org/10.1002/anie.200702953

    Article  CAS  PubMed  Google Scholar 

  22. Fihri, A., Artero, V., Pereira, A., & Fontecave, M. (2008). Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Transactions. https://doi.org/10.1039/B812605B

    Article  PubMed  Google Scholar 

  23. Artero, V., Chavarot-Kerlidou, M., & Fontecave, M. (2011). Splitting water with cobalt. Angewandte Chemie International Edition, 50, 7238–7266. https://doi.org/10.1002/anie.201007987

    Article  CAS  PubMed  Google Scholar 

  24. Pellegrin, Y., & Odobel, F. (2017). Sacrificial electron donor reagents for solar fuel production. Comptes Rendus Chimie, 20, 283–295. https://doi.org/10.1016/j.crci.2015.11.026

    Article  CAS  Google Scholar 

  25. Razavet, M., Artero, V., & Fontecave, M. (2005). Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases. Inorganic Chemistry, 44, 4786–4795. https://doi.org/10.1021/ic050167z

    Article  CAS  PubMed  Google Scholar 

  26. Sullivan, B. P., Bolinger, C. M., Conrad, D., Vining, W. J., & Meyer, T. J. (1985). One- and two-electron pathways in the electrocatalytic reduction of CO2 by fac-Re(bpy)(CO)3Cl (bpy = 2,2′-bipyridine). Journal of the Chemical Society, Chemical Communications. https://doi.org/10.1039/C39850001414

    Article  Google Scholar 

  27. Deaton, J. C. & Castellano, F. N. (2017). Archetypal iridium(III) compounds for optoelectronic and photonic applications: photophysical properties and synthetic methods. In: E. Zysman-Colman (Ed.) Iridium(III) in optoelectronic and photonics applications (pp. 1–69). Wiley.

  28. Bevernaegie, R., Wehlin, S. A. M., Elias, B., & Troian-Gautier, L. (2021). A roadmap towards visible light mediated electron transfer chemistry with iridium(III) Complexes. ChemPhotoChem, 5, 217–234. https://doi.org/10.1002/cptc.202000255

    Article  CAS  Google Scholar 

  29. Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chemical Reviews, 113, 5322–5363. https://doi.org/10.1021/cr300503r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lentz, C., Schott, O., Auvray, T., Hanan, G., & Elias, B. (2017). Photocatalytic hydrogen production using a red-absorbing Ir(III)–Co(III) Dyad. Inorganic Chemistry, 56, 10875–10881. https://doi.org/10.1021/acs.inorgchem.7b00684

    Article  CAS  PubMed  Google Scholar 

  31. Sauvageot, E., et al. (2016). Iridium complexes inhibit tumor necrosis factor-α by utilizing light and mixed ligands. Journal of Organometallic Chemistry, 808, 122–127. https://doi.org/10.1016/j.jorganchem.2016.02.001

    Article  CAS  Google Scholar 

  32. Lin, S., et al. (2015). Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chemical Science, 6, 4284–4290. https://doi.org/10.1039/C5SC01320H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, L., et al. (2014). Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chemical Science, 5, 4561–4568. https://doi.org/10.1039/C4SC02032D

    Article  CAS  Google Scholar 

  34. Lin, S., et al. (2015). Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(iii) complex. Chemical Communications, 51, 16033–16036. https://doi.org/10.1039/C5CC06655G

    Article  CAS  PubMed  Google Scholar 

  35. Liu, L.-J., et al. (2015). An Iridium(III) Complex inhibits JMJD2 activities and acts as a potential epigenetic modulator. Journal of Medicinal Chemistry, 58, 6697–6703. https://doi.org/10.1021/acs.jmedchem.5b00375

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, Q., et al. (2006). Series of New Cationic Iridium(III) complexes with tunable emission wavelength and excited state properties: Structures, theoretical calculations, and photophysical and electrochemical properties. Inorganic Chemistry, 45, 6152–6160. https://doi.org/10.1021/ic052034j

    Article  CAS  PubMed  Google Scholar 

  37. Nonoyama, M. (1974). Benzo[h]quinolin-10-yl-N Iridium(III) complexes. Bulletin of the Chemical Society of Japan, 47, 767–768. https://doi.org/10.1246/bcsj.47.767

    Article  CAS  Google Scholar 

  38. Bevernaegie, R., et al. (2018). Ultrafast charge transfer excited state dynamics in trifluoromethyl-substituted iridium(iii) complexes. Physical Chemistry Chemical Physics: PCCP, 20, 27256–27260. https://doi.org/10.1039/C8CP04265A

    Article  CAS  PubMed  Google Scholar 

  39. Bevernaegie, R., et al. (2018). Trifluoromethyl-substituted iridium(III) complexes: From photophysics to photooxidation of a biological target. Inorganic Chemistry, 57, 1356–1367. https://doi.org/10.1021/acs.inorgchem.7b02778

    Article  CAS  PubMed  Google Scholar 

  40. Brouwer, A. M. (2011). Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 83, 2213–2228. https://doi.org/10.1351/PAC-REP-10-09-31

    Article  CAS  Google Scholar 

  41. Franco, C., & Olmsted, J. (1990). Photochemical determination of the solubility of oxygen in various media. Talanta, 37, 905–909. https://doi.org/10.1016/0039-9140(90)80251-A

    Article  CAS  PubMed  Google Scholar 

  42. Juris, A., et al. (1988). Ru(II) polypyridine complexes: Photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85–277. https://doi.org/10.1016/0010-8545(88)80032-8

    Article  CAS  Google Scholar 

  43. Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G. & Balzani, V. (2007). Photochemistry and photophysics of coordination compounds: Ruthenium. In: V. Balzani & S. Campagna (Eds.), Photochemistry and photophysics of coordination compounds I (pp. 117–214). Springer Berlin Heidelberg.

  44. Yarnell, J. E., McCusker, C. E., Leeds, A. J., Breaux, J. M., & Castellano, F. N. (2016). Exposing the excited-state equilibrium in an IrIII bichromophore: A combined time resolved spectroscopy and computational study. European Journal of Inorganic Chemistry. https://doi.org/10.1002/ejic.201600194

    Article  Google Scholar 

  45. McCusker, C. E., Chakraborty, A., & Castellano, F. N. (2014). Excited state equilibrium induced lifetime extension in a dinuclear platinum(II) complex. Journal of Physical Chemistry A, 118, 10391–10399. https://doi.org/10.1021/jp503827e

    Article  CAS  PubMed  Google Scholar 

  46. Kuramochi, Y., & Ishitani, O. (2016). Iridium(III) 1-Phenylisoquinoline complexes as a photosensitizer for photocatalytic CO2 reduction: A mixed system with a Re(I) catalyst and a supramolecular photocatalyst. Inorganic Chemistry, 55, 5702–5709. https://doi.org/10.1021/acs.inorgchem.6b00777

    Article  CAS  PubMed  Google Scholar 

  47. Giereth, R., et al. (2021). Exploring the full potential of photocatalytic carbon dioxide reduction using a dinuclear Re2Cl2 complex assisted by various photosensitizers. ChemPhotoChem, 5, 644–653. https://doi.org/10.1002/cptc.202100034

    Article  CAS  Google Scholar 

  48. Takeda, N., & Miller, J. R. (2020). Inverted region in bimolecular electron transfer in solution enabled by delocalization. Journal of the American Chemical Society, 142, 17997–18004. https://doi.org/10.1021/jacs.0c04780

    Article  CAS  PubMed  Google Scholar 

  49. Bevernaegie, R., et al. (2020). Improved visible light absorption of potent iridium(III) photo-oxidants for excited-state electron transfer chemistry. Journal of the American Chemical Society, 142, 2732–2737. https://doi.org/10.1021/jacs.9b12108

    Article  CAS  PubMed  Google Scholar 

  50. Piechota, E. J., & Meyer, G. J. (2019). Introduction to electron transfer: Theoretical foundations and pedagogical examples. Journal of Chemical Education, 96, 2450–2466. https://doi.org/10.1021/acs.jchemed.9b00489

    Article  CAS  Google Scholar 

  51. Closs, G. L., & Miller, J. R. (1988). Intramolecular long-distance electron transfer in organic molecules. Science, 240, 440–447. https://doi.org/10.1126/science.240.4851.440

    Article  CAS  PubMed  Google Scholar 

  52. Aydogan, A., et al. (2021). Mechanistic investigation of a visible light mediated dehalogenation/cyclisation reaction using iron(iii), iridium(iii) and ruthenium(ii) photosensitizers. Catalysis Science & Technology, 11, 8037–8051. https://doi.org/10.1039/D1CY01771C

    Article  CAS  Google Scholar 

  53. Connell, T. U., et al. (2019). The tandem photoredox catalysis mechanism of [Ir(ppy)2(dtb-bpy)]+ enabling access to energy demanding organic substrates. Journal of the American Chemical Society, 141, 17646–17658. https://doi.org/10.1021/jacs.9b07370

    Article  CAS  PubMed  Google Scholar 

  54. Xu, B., et al. (2020). Photocatalyzed diastereoselective isomerization of cinnamyl chlorides to cyclopropanes. Journal of the American Chemical Society, 142, 6206–6215. https://doi.org/10.1021/jacs.0c00147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morton, C. M., et al. (2019). C-H alkylation via multisite-proton-coupled electron transfer of an aliphatic C–H Bond. Journal of the American Chemical Society, 141, 13253–13260. https://doi.org/10.1021/jacs.9b06834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deetz, A. M., Troian-Gautier, L., Wehlin, S. A. M., Piechota, E. J., & Meyer, G. J. (2021). On the determination of halogen atom reduction potentials with photoredox catalysts. Journal of Physical Chemistry A, 125, 9355–9367. https://doi.org/10.1021/acs.jpca.1c06772

    Article  CAS  PubMed  Google Scholar 

  57. Hankache, J., Niemi, M., Lemmetyinen, H., & Wenger, O. S. (2012). Photoinduced electron transfer in linear triarylamine–photosensitizer–anthraquinone triads with ruthenium(II), osmium(II), and iridium(III). Inorganic Chemistry, 51, 6333–6344. https://doi.org/10.1021/ic300558s

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Université catholique de Louvain and the University of North Carolina at Chapel Hill. This work was supported by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) under grant no. U.N021.21 (B.E.) and the Collaborateur Scientifique fellowship (L.T.-G). We acknowledge the use of a nitrogen laser in the CHASE Instrumentation Facility established by the Center for Hybrid Approaches in Solar Energy to Liquid Fuels, CHASE, an Energy Innovation Hub funded by the US Department of Energy, Office of Basic Energy Sciences, Office of Science, under award number DE-SC0021173.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Benjamin Elias or Ludovic Troian-Gautier.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2022_233_MOESM1_ESM.pdf

Electrochemistry, Stern–Volmer experiments, steady-state photolysis, high-resolution mass spectra, 1H NMR spectra (PDF 5875 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wodon, M., De Kreijger, S., Sampaio, R.N. et al. Accumulation of mono-reduced [Ir(piq)2(LL)] photosensitizers relevant for solar fuels production. Photochem Photobiol Sci 21, 1433–1444 (2022). https://doi.org/10.1007/s43630-022-00233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00233-z

Navigation