Skip to main content
Log in

Induced selectivity in the photochemistry of estrone derivatives in sustainable and micellar environment: preparative and mechanistic studies

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this study, we carried out preparative and mechanistic studies on the photochemical reaction of a series of 3-acylestrone derivatives in confined and sustainable micellar environment under steady-state conditions and the results were compared with those obtained in cyclohexane solution. The aim of this work is mainly focused to show whether the nature of the surfactant (cationic, neutral and anionic) leads to noticeable selectivity in the photoproduct formation. The 3-acylestrone derivatives underwent the photo-Fries rearrangement, with concomitant homolytic fragmentation of the ester group and [1;3]-acyl migration. This pathway afforded the ortho-acyl estrone derivatives, the main photoproducts together with estrone. However, epimerization of the ortho regioisomer 2-acetylestrone and estrone through Norrish Type I photoreaction occurred involving the fragmentation of the C-α at the carbonyl group (C-17) of the steroid. UV–visible and 2D-NMR (NOESY) spectroscopies have been employed to measure the binding constant Kb and the location of the steroids within the hydrophobic core of the micelle.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 5

Similar content being viewed by others

References

  1. Lian, L., Miao, Ch., Hao, Zh., Liu, L., & Q. Y., Song, W., & Yan, Sh. . (2021). Reevaluation of the contributions of reactive intermediates to the photochemical transformation of 17β-estradiol in sewage effluent. Water Research, 189, 116633.

    Article  CAS  PubMed  Google Scholar 

  2. Perondi, T., Michelon, W., Basso, V., Bohrer, J. K., Viancelli, A., Fonseca, T. G., Treichel, H., Moreira, R. F. M., Peralta, R. A., Düsman, E., & Pokrywiecki, T. S. (2020). Degradation of estriol (E3) and transformation pathways after applying photochemical removal processes in natural surface water. Water Science and Technology, 82, 1445–1453.

    Article  CAS  PubMed  Google Scholar 

  3. Perondi, T., Michelon, W., Junior, P. R., Knoblauch, P. M., Chiareloto, M., Moreira, R. F. P. M., Moreira, R. A., Düsman, E., & Pokrywiecki, T. S. (2020). Advanced oxidative processes in the degradation of 17β-estradiol present on surface waters: Kinetics, byproducts and ecotoxicity. Environmental Science and Pollution Research, 27, 21032–21039.

    Article  CAS  PubMed  Google Scholar 

  4. Reng, D., Chen, F., Ren, Zh., & Wang, Y. (2019). Different response of 17-α-ethinylestradiol photodegradation induced by acquatic humic and fulvic acids to typical water matrixes. Process Safety and Environmental Protection, 121, 367–373.

    Article  CAS  Google Scholar 

  5. Cantalupi, A., Maraschi, F., Pretali, L., Albini, A., Nicolis, S., Ferri, E. N., Profumo, A., Speltini, A., & Sturini, M. (2020). Glucocorticoids in freshwaters: Degradation by solar light and environmetal toxicity. International Journal of Environmental Research and Public Health, 17, 8717–8732.

    Article  CAS  PubMed Central  Google Scholar 

  6. Cacciari, R. D., Reynoso, E., Menis Candela, F., Sabini, C., Montejano, H. A., & Biasutti, M. A. (2020). Photochemical study of the highly used corticosteroids dexamethansone and prednisone. Effects of micellar confinement and cytotoxicity analysis of photoproducts. New Journal of Chemistry, 44, 18119–18129.

    Article  CAS  Google Scholar 

  7. Vulliet, E., Falletta, M., Marote, P., Lomberget, T., Païssé, J. O., & Grenier-Loustalot, M. F. (2010). Light induced degradation of testosterone in waters. Science of the Total Environment, 408, 3554–3559.

    Article  CAS  PubMed  Google Scholar 

  8. Young, R. B., Lotch, D. E., Mawhinney, D. B., Nguyen, T. H., Davis, J. C. C., & Borch, T. (2013). Direct photodegradation of androstenedione and testosterone in natural sunlight: Inhibition by dissolved organic matter and reduction of endocrine disrupting potential. Environmental Science & Technology., 47, 8416–8424.

    CAS  Google Scholar 

  9. Vulliet, E., Giroud, B. B., & Marote, P. (2013). Determination of testosterone and its photodegradation products in surface waters using solid-phase extraction followed by LC–MS/MS analysis. Environmental Science and Pollution Research, 20, 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  10. Waters, J. A., Kondo, Y., & Witkop, B. (1972). Photochemistry of steroids. Journal of Pharmaceutical Sciences, 61, 321–334.

    Article  CAS  PubMed  Google Scholar 

  11. Karkas, M. D., Porco, J. A., & Stephenson, C. R. J. (2016). Photochemical approaches to complex chemotypes: Applications in natural product synthesis. Chemical Reviews, 116, 9683–9747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pflug, N. C., Kral, A. K., Hankard, M. K., Breuckman, K. C., Kolodziej, E. P., Gloer, J. B., Wammer, K. H., & Cwiertny, D. M. (2020). Photolysis of trenbolone acetate metabolites in the presence of nucleophiles: Evidence for metastable photoaddition products and reversible associations with dissolved organic matter. Environ. Science & Technology, 54, 12181–12190.

    Article  CAS  Google Scholar 

  13. Capilato, J. N., Pitts, C. R., Rowshanpour, R., Dubbing, T., & Lectka, T. (2020). Site-selective photochemical fluorination of ketals: Unanticipated outcomes in selectivity and stability. Journal of Organic Chemistry, 85, 2855–2864.

    Article  CAS  PubMed  Google Scholar 

  14. Dighe, S. U., Juliá, F., Luridiana, A., Douglas, J. J., & Leonori, D. (2020). A photochemical dehydrogenative strategy for aniline synthesis. Nature, 584, 75–81.

    Article  CAS  Google Scholar 

  15. Laktsevich-Iskryk, M. V., Rudovich, A. S., Zhabinskii, V. N., Khripach, V. A., & Hurski, V. A. (2020). A photochemical approach to 18-nor-17β-hydroxymethyl-17α-methylandrost-13-ene steroids. Steroids, 159, 108652.

    Article  CAS  PubMed  Google Scholar 

  16. Tiver, S., & Yates, P. (1988). Photochemistry of cyclic α-hydroxy ketones. I. The nature and genesis of the photoproducts from steroidal 5-hydroxy 6-keto steroids and related compounds. Canadian Journal of Chemistry, 66, 214–226.

    Article  Google Scholar 

  17. Bellus, D., Kearns, D. R., & Schaffner, K. (1969). Photochemische reaktionen. 52. Mitteilung [1]. ZurPhotochemie von α, β-ungesättingtencyclishenketonen: Spezifische reaktionen der n,π* und,π*-triplettzutstände von O-acetyl-tetosteron und 10-methyl-Δ1,9-octalon-(2). Helvetica Chimica Acta, 52, 971–1009.

    Article  CAS  Google Scholar 

  18. Wu, Z.-Z., & Morrison, H. (1992). Organic photochemistry. 95. Antenna-initiated photochemistry of distal groups in polyfunctional steroids. Intramolecular singlet and triplet energy transfer in 3α-(dimethylphenylsiloxy)-5α-androstan-17-one and 3α-(dimethylphenylsiloxy)-5α-androstane-11,17-dione. Journal of the American Chemical Society, 114, 4119–4128.

    Article  CAS  Google Scholar 

  19. Blandon, P., McMeekin, W., & Williams, I. A. (1963). Steroids Derived from Hecogenin. Part III. The Photochemistry of Hecogenin Acetate. Journal of the Chemical Society, 5727–5737

  20. Jeger, O., & Schaffner, K. (1970). On photochemical transformations of steroids. Pure and Applied Chemistry, 20, 247–262.

    Article  Google Scholar 

  21. Lai, W.-C., Danko, B., Csabi, J., Kele, Z., Chang, F. R., Pascu, M. L., Gati, T., Simon, A., Amaral, A. L., Toth, G., & Hunyadi, A. (2014). Rapid, laser-induced conversion of 20-hydroxyecdysone. Follow-up study on the products obtained. Steroids, 89, 56–62.

    Article  CAS  PubMed  Google Scholar 

  22. Quindt, M. I., Gola, G. F., Ramirez, J. A., & Bonesi, S. M. (2019). The photo-Fries rearrangement of some 3-acylestrone in homogeneous media. Preparative and mechanistic studies. Journal of Organic Chemistry, 84, 7051–7065.

    Article  CAS  PubMed  Google Scholar 

  23. Quindt, M. I., Gola, G. F., Ramirez, J. A., & Bonesi, S. M. (2021). Photochemical behavior of some estrone aryl and methyl sulfonates in solution. Preparative and mechanistic studies. Photochemistry and Photobiology, 97, 8–21.

    Article  CAS  PubMed  Google Scholar 

  24. Fan, J., Zheng, Y., Yang, Y., Du, L., & Wang, Y. (2020). Enhancement of ultraviolet B irradiation with a photoluminiscent composite film and its application in photochemical microfluidic synthesis. Industrial and Engineering Chemistry Research, 59, 12870–12878.

    Article  CAS  Google Scholar 

  25. Sheng, X., Zheng, Y., Li, W., Gao, R., Du, L., & Wang, Y. (2020). Scale-up potential of photochemical microfluidic synthesis by selective dimension enlarging with agitation of microbubbles. Chemical Engineering Science, 226, 5862.

    Article  CAS  Google Scholar 

  26. Niu, W., Zheng, Y., Li, Y., Du, L., & Liu, W. (2021). Photochemical microfluidic synthesis of vitamin D3 by improved light sources with photoluminiscent substrates. Chinese Journal of Chemical Engineering, 29, 204–211.

    Article  CAS  Google Scholar 

  27. Tung, C. H., Wu, L. Z., Zhang, L. P., & Cheng, B. (2003). Supramolecular systems as microreactors: control of product selectivity in organic phototransformation. Accounts of Chemical Research, 36, 39–47.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, R. S. H., & Hammond, G. S. (2005). Reflection on medium effects on photochemical reactivity. Accounts of Chemical Research, 38, 396–403.

    Article  CAS  PubMed  Google Scholar 

  29. Miranda, M. A., & Galindo, F. (2003). Photochemistry of Organic Molecules in isotropic and Anisotropic Media. In V. Ramamurthy & K. S. Schanze (Eds.), Chapter 2: The Photo-Fries rearrangement (pp. 43–131). New York: Marcel Dekker.

    Google Scholar 

  30. Natarajan, A., Kaanumale, L. S., & Ramamurthy, V. (2004). CRC Handbook of organic photochemistry and photobiology. In W. Horspool & F. Lenci (Eds.), Manipulating photochemical reactions (pp. 107–147). CRC Press.

    Google Scholar 

  31. Turro, N. J. (2000). From boiling stones to smart crystals: supramolecular and magnetic isotope control of radical−radical reactions in zeolites. Accounts of Chemical Research, 33, 637–646.

    Article  CAS  PubMed  Google Scholar 

  32. Ramamurthy, V. (2000). Controlling photochemical reactions via confinement: Zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 145–166.

    Article  CAS  Google Scholar 

  33. Fendler, J. H., & Fendler, E. J. (1975). Catalysis in Micellar and Macromolecular Systems. Academic Press.

    Google Scholar 

  34. Holland, P.M. & Rubingh, D.N. (1992). Mixed Surfactant System. In P. M., Holland & D. N. Rubingh, (Eds.), Mixed Surfactant System An Overview. (pp. 2–30). American Chemical Society.

  35. Gu, W., & Weiss, R. G. (2001). Extracting fundamental photochemical and photophysical information from photorearrangements of aryl phenylacylates and aryl benzyl ethers in media comprised of polyolefinic films. J. Photochem. Photobiol. C: Photochemistry Reviews, 2, 117–137.

    Article  CAS  Google Scholar 

  36. Kaanumalle, L. S., Gibb, C. L. D., Gibb, B. C., & Ramamurthy, V. (2007). Photo-Fries reaction in water made selective with a capsule. Organic & Biomolecular Chemistry, 5, 236–238.

    Article  CAS  Google Scholar 

  37. Kulasekharan, R., Choudhurry, R., Prabhakar, R., & Ramamurthy, V. (2011). Restricted rotation due to the lack of free space within a capsule translates into product selectivity: Photochemistry of cyclohexyl phenyl ketones within a water-soluble organic capsule. Chemical Communications, 47, 2841–2843.

    Article  CAS  PubMed  Google Scholar 

  38. Kaanumalle, L. S., Nithyanandhan, J., Pattabiaman, M., Jayaraman, N., & Ramamurthy, V. (2004). Water-Soluble Dendrimers as Photochemical Reaction Media: Chemical Behavior of Singlet and Triplet Radical Pairs Inside Dendritic Reaction Cavities. Journal of the American Chemical Society, 126, 8999–9006.

    Article  CAS  PubMed  Google Scholar 

  39. Menger, F. M. (1979). The structure of micelles. Accounts of Chemical Research, 12, 111–117.

    Article  CAS  Google Scholar 

  40. Turro, N. J., & Mattay, J. (1981). Photochemistry of some deoxybenzoins in micellar solutions. Cage effects, isotope effects, and magnetic field effects. Journal of the American Chemical Society, 103, 4200–4204.

    Article  CAS  Google Scholar 

  41. Turro, N. J., Sidney Cox, G., & Paczkowski, M. A. (1985). Topics in Current Chemistry, Photochemistry and Organic Synthesis. In F. L. Boschke (Ed.), Photochemistry in Micelles (pp. 57–97). Springer.

    Google Scholar 

  42. Kano, K., & Matsuo, T. (1973). Photochemical reaction of the p-benzoquinones in micellar system. Chemistry Letters, 2, 1127–1132.

    Article  Google Scholar 

  43. Kano, K., Takada, Y., & Matsuo, T. (1975). Photochemistry in micellar system. II. Photochemical reduction of b-arylquinonesulfonates in the presence of cationic surfactants. Bulletin of the Chemical Society of Japan, 48, 3215–3219.

    Article  CAS  Google Scholar 

  44. Yasudat, M., Nishinaka, Y., Nakazono, T., Hamasaaki, T., Nakamura, N., Shiragami, T., Pac, C., & T., & Shima, K. . (1998). Photochemistry of flavins in micelles: Specific effects of anionic surfactants on the monomerization of thymine cyclobutane dimers photosensitized by tetra-O-acyl riboflavins. Photochemistry and Photobiology, 67, 192–197.

    Article  Google Scholar 

  45. Souza Santos, M., Morais Del Alma, M. P. F., Ito, A. S., & Naal, R. M. Z. G. (2014). Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge. Journal of Luminescence, 147, 49–58.

    Article  CAS  Google Scholar 

  46. Iguchi, D., Erra-Balsells, R., & Bonesi, S. M. (2016). Photo-Fries rearrangement of aryl acetamides: regioselectivity induced by the aqueous micellar green environment. Photochemical & Photobiological Sciences, 15, 106–116.

    Article  CAS  Google Scholar 

  47. Siano, G., Crespi, S., Mella, M., & Bonesi, S. M. (2019). Selectivity in the photo-Fries rearrangement of some aryl benzoates in green and sustainable media. Preparative and mechanistic studies. Journal of Organic Chemistry, 84, 4338–4352.

    Article  CAS  PubMed  Google Scholar 

  48. Siano, G., Crespi, S., & Bonesi, S. M. (2020). Direct irradiation of phenol and p-substituted phenols with a laser pulse (266 nm) in homogeneous and micro heterogeneous media. A time-resolved spectroscopy study. The Journal of Organic Chemistry, 85(21), 14012–14025.

    Article  CAS  PubMed  Google Scholar 

  49. Siano, G., Crespi, S., & Bonesi, S. M. (2021). Substituent and surfactant effects on the photochemical reaction of some aryl benzoates in micellar green environment. Photochemistry and Photobiology. https://doi.org/10.1111/php.13431

    Article  PubMed  Google Scholar 

  50. Anderson, J. C., & Reese, C. B., (1960). Photoinduced Fries rearrangement. Proc. Chem. Soc.

  51. Bellus, D. (1971). Photo-Fries rearrangement and related photochemical [1, j]–shift (j: 3, 5, 7) of carbonyl and sulfonyl groups. Advances in Photochemistry, 8, 109–159.

    CAS  Google Scholar 

  52. Miranda, M. A. (1995). CRC Handbook of organic photochemistry and photobiology. In W. Horspool & P. S. Song (Eds.), The Photo-Fries rearrangement (pp. 570–578). CRC Press.

    Google Scholar 

  53. Turro, N. J. (1978). In Modern Molecular Photochemistry, Chapter 5 (pp. 76–152). Menlo Park: The Benjamin Cummings Publishing Company.

  54. Turro, N. J., Ramamurthy, V., & Scaiano, J. C., (2010). Modern Molecular Photochemistry of Organic Molecules. In N. J., Turro, V., Ramamurthy, & J. C., Scaiano (Eds.). Chapter 4 (pp. 169–362). Sausalito: University Science Books.

  55. Zakharova, L. Y., Valeeva, F. G., Ibragimova, A. R., Zakharov, V. M., Kudryavtseva, L. A., Elistratova, Yu. G., Mustafina, A. R., Konovalov, A. I., Shtykov, S. N., & Bogomolova, I. V. (2007). Properties of a sodium dodecyl sulfate-Brij 35 binary micellar system and their effect on the alkaline hydrolysis of O-ethyl-O-p-nitrophenylchloromethylphosphonate. Colloid Journal, 69, 718–725.

    Article  CAS  Google Scholar 

  56. Fuguet, E., Rafols, C., & Rosés, M. (2003). Characterization of the solvation properties of surfactants by solvatochromic indicators. Langmuir, 19, 6685–6692.

    Article  CAS  Google Scholar 

  57. Reichardt, Ch. (2003). Solvents and solvent effects in Organic Chemistry. In Ch. Reichardt (Ed.), Empirical parameters of solvent polarity (pp. 389–469). Wiley.

    Google Scholar 

  58. Watcher, M. P., Adams, R. E., Cotter, M. A., & Settepani, J. A. (1979). Lumi-mestranol and epi-lumi-mestrano. Steroids, 33, 287–294.

    Article  Google Scholar 

  59. Trudeau, V. L., Heyne, B., Blais, J. M., Temussi, F., Atkinson, S. K., Pakdel, F., Popesku, J. T., Marlatt, V. L., Scaiano, J. C., Previtera, L., & Lean, D. R. S. (2012). Lumiestrone is photochemically derived from estrone and may be released to the environment without detection. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2011.00083

    Article  PubMed  PubMed Central  Google Scholar 

  60. Whidbey, Ch. M., Daumit, K. E., Nguyen, T.-H., Ashworth, D. D., Davis, J. C. C., & Latch, D. E. (2012). Photochemical induced changes of in vitro estrogenic activity of steroid hormones. Water Research, 46, 5287–5296.

    Article  CAS  PubMed  Google Scholar 

  61. Weller, A. (1956). Innermolekularer protonen übergang imangeregten zustand. Zeitscrift für Elektrochemie, 60, 1144–1147.

    CAS  Google Scholar 

  62. Goodman, J., & Brus, L. E. (1978). Proton transfer and tautomerism in an excited state of methyl salicylate. Journal of the American Chemical Society, 100, 7472–7474.

    Article  CAS  Google Scholar 

  63. Smith, K. K., & Kaufman, K. J. (1978). Picosecond studies of intramolecular proton transfer. Journal of Physical Chemistry, 82, 2286–2291.

    Article  CAS  Google Scholar 

  64. Acuña, A. U., Armat Guerri, F., Catalán, J., & González-Tablas, F. (1980). Dual fluorescence and ground state equilibriums in methyl salicylate, methyl 3-chlorosalicylate, and methyl 3-tert-butylsalicylate. Journal of Physical Chemistry, 84, 629–631.

    Article  Google Scholar 

  65. Formosinho, S. J., & Arnaut, L. G. (1993). Excited-state proton transfer reactions II. Intramolecular reactions. Journal of Photochemistry and Photobiology A: Chemistry, 75, 21–48.

    Article  CAS  Google Scholar 

  66. Matsushima, R., & Kageyama, H. (1985). Photochemical cyclization of 2’-hydroxychalcones. Journal of the Chemical Society, Perkin Transactions, II, 743–748.

    Article  Google Scholar 

  67. Kaneda, K., & Arai, T. (2003). Photoinduced hydrogen atom transfer in trans-1-(1’-hydroxy-2’-naphthyl)-3-(1-naphthyl)-2-propen-1-one. Photochemical & Photobiological Sciences, 2, 402–406.

    Article  CAS  Google Scholar 

  68. Kaneda, K., & Arai, T. (2003). Mechanistic approach to the cyclization reaction of a 2’-hydroxychalcone analogue with light and solvent. Organic & Biomolecular Chemistry, 1, 2041–2043.

    Article  CAS  Google Scholar 

  69. Wu, Z.-Z., Nash, J., & Morrison, H. (1992). Antenna-initiated photochemistry in polyfunctional steroids. Photoepimerization of 3α-(dimethylphenylsilyloxy)-5α-androstane-6,17-dione and its 3β-isomer by through-bond exchange energy transfer. Journal of the American Chemical Society, 114, 6640–6648.

    Article  CAS  Google Scholar 

  70. Perez, R. L., & Escandar, G. M. (2013). Spectrofluorimetric study of estrogen-cyclodextrin inclusion complexes in aqueous systems. The Analyst, 138, 1239–1248.

    Article  CAS  PubMed  Google Scholar 

  71. Gañan, J., Morante-Zarcero, S., & Sierra, I. (2014). Influence of organic modifier additives to separate steroids by micellar electrokinetic chromatography: Determination of the solute-micelle association constants at different acetonitrile concentrations. Analytical Letters, 47, 1513–1527.

    Article  CAS  Google Scholar 

  72. Shakalisava, Y., & Regan, F. (2006). Determination of association constants of inclusion complexes of steroids hormones and cyclodextrins from their electrophoretic mobility. Electrophoresis, 27, 3048–3056.

    Article  CAS  PubMed  Google Scholar 

  73. Luning Prak, D. J., Jahraus, W. I., Sims, J. M., & Roy McArthur, A. H. (2011). An 1H NMR investigation into the loci of solubilization of 4-nitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene in nonionic surfactant micelles. Colloids Surfaces A, 375, 12–22.

    Article  CAS  Google Scholar 

  74. Bernardez, L. A. (2008). Investigation on the locus of solubilization of polycyclic aromatic hydrocarbons in non-ionic surfactant micelles with 1H NMR spectroscopy. Colloids and Surfaces A, 324, 71–78.

    Article  CAS  Google Scholar 

  75. Eriksson, J. C. (1963). NMR-experiments on solubilization in soap micelles. Acta Chemica Scandinavica, 17, 1478–1481.

    Article  CAS  Google Scholar 

  76. Eriksson, J. C., & Gillberg, G. (1966). NMR-studies of the solubilisation of aromatic compounds in cetyltrimethylammonium bromide solution. II. Acta Chemica Scandinavica, 20, 2019–2027.

    Article  CAS  Google Scholar 

  77. Yuan, H. Z., Zhao, S., Cheng, G. Z., Zhang, L., Miao, X. J., Mao, S. Z., Yu, J. Y., Shen, L. F., & Du, Y. R. (2001). Mixed micelles of Triton X-100 and Cetyl triammonium bromide in aqueous solution studied by 1H NMR. The Journal of Physical Chemistry B, 105, 4611–4615.

    Article  CAS  Google Scholar 

  78. Gilard, V., Balayssac, S., Malet-Martino, M., & Martino, R. (2010). Quality control of herbal medicines assessed by NMR. Current Pharmaceutical Analysis, 6, 234–245.

    Article  CAS  Google Scholar 

  79. Wu, M., Wu, Z., Ding, S., Chen, Z., & Cui, X. (2020). Different submicellar solubilization mechanisms revealed by 1H NMR and 2D diffusion ordered spectroscopy (DOSY). Physical Chemistry Chemical Physics: PCCP, 22, 11075–11085.

    Article  CAS  PubMed  Google Scholar 

  80. Awad, T. S., Asker, D., & Romsted, L. S. (2018). Evidence of coexisting microemulsion droplets in oil-in-water emulsions revealed by 2D DOSY 1H NMR. Journal of colloid and interface science, 514, 83–92.

    Article  CAS  PubMed  Google Scholar 

  81. Weinreb, A., & Werner, A. (1974). On the luminescence of estrogens. Photochemistry and Photobiology, 20, 313–321.

    Article  CAS  PubMed  Google Scholar 

  82. Butenandt, A., & Poschmann, L. (1944). Uber lumiandrosteron. Berichte der deutschen chemischen Gesellschaft (A and B Series) , 77, 394–397.

    Article  Google Scholar 

  83. Wherli, H., & Schaffner, K. (1962). Photochemischereaktionen. Helvetica Chimica Acta, 45, 385–389.

    Google Scholar 

  84. Quinkert, G., & Heine, H. G. (1963). Bildung unge sättigter carbonsäuren durchlicht induzierte autoxidation nicht konjugierter ketone. Tetrahedron Letters, 4, 1659–1664.

    Article  Google Scholar 

  85. Wagner, P. J. (1976). Chemistry of excited triplet organic carbonyl compounds. Topics in Current Chemistry, 66, 1–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SMB and JAR are research members of CONICET. MIQ thanks CONICET for doctoral scholarship

(Doctorate Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio M. Bonesi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2021_107_MOESM1_ESM.docx

Supplementary file1 Time-resolved UV-visible absorption spectra of esters 1 – 3 in cyclohexane and micellar solutions. Solvent effect on the n,π* energy band from esters 1 and 2. Bathochormic and hyperchromic shifts under surfactant titration. Double-reciprocal plots for the determination of the binding constants. Comparison between 1H NMR spectra of surfactants for determination of the differential chemical shifts (Δδ).Contour plots of 2D NMR (NOESY experiments) between surfactants and esters 1 – 3. This material is available free of charge via the Internet at XXXX. (DOCX 60322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quindt, M.I., Gola, G.F., Ramirez, J.A. et al. Induced selectivity in the photochemistry of estrone derivatives in sustainable and micellar environment: preparative and mechanistic studies. Photochem Photobiol Sci 21, 625–644 (2022). https://doi.org/10.1007/s43630-021-00107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00107-w

Navigation