Skip to main content
Log in

UV-responsive micellar systems and aqueous two-phase systems based on cationic ester-containing gemini surfactant and sodium trans-ortho-methoxycinnamate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Three ester-containing gemini surfactants (CmDEGs) were used to construct UV-responsive micellar systems with sodium trans-ortho-methoxycinnamate (trans-NaOMCA) as photo-sensitive additive. The effect of tail-chain length and spacer chain length on the UV-responsive ability was preliminarily explored. Longer tail chain and shorter spacer chain are favorable factors for enhancing UV-responsive ability. The addition of trans-NaOMCA into N,N′-bis(2-(dodecanoyloxy)ethyl)-N,N,N′,N′-tetramethyl-1,3-propane diammonium dibromide (C12DEG3) aqueous solution leads to a peak in zero-shear viscosity (η0) versus composition curve, and its further addition induces aqueous two-phase separation. For the C12DEG3/trans-NaOMCA/H2O mixed micellar systems, the UV responsiveness of significant decrease in η0 ascribes to microstructural transitions arising from the changes in counterion binding modes due to the trans-cis photoisomerization of NaOMCA. In comparison with the gemini surfactant 12-3-12, C12DEG3 has ester groups introduced in its tail chains. The introduction of ester groups leads to a significant effect on enhancing the photo-responsive ability in viscosity decrease of the constructed UV-responsive micellar systems. Furthermore, the effect of the addition of an amino acid–based surfactant sodium lauroylglutamate (SLGlu) into the C12DEG3/trans-NaOMCA/H2O mixed system on the UV-responsive behaviors was explored. In addition to UV-induced significant decrease in η0 and phase transition from aqueous two-phase systems (ATPS) to isotropic single-phase systems, the addition of SLGlu can also cause UV-induced increase in η0 and lead to richer UV-induced phase transition behaviors. The reason leading to these differences due to the presence of SLGlu was discussed based on 1H NMR spectra, molecular dynamics (MD) simulation, and molecular electrostatic potential (MEP) analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Feng Y, Chu Z, Dreiss CA (2015) Smart wormlike micelles: design, characteristics and applications. Springer-Verlag, Berlin https://www.springer.com/cn/book/9783662459492

    Book  Google Scholar 

  2. Zhuang J, Gordon M, Ventura J, Li L, Thayumanavan S (2013) Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 42:7421–7435. https://doi.org/10.1039/c3cs60094g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fameau A-L, Arnould A, Saint-Jalmes A (2014) Responsive self-assemblies based on fatty acids. Curr Opin Colloid Interface Sci 19:471–479. https://doi.org/10.1016/j.cocis.2014.08.005

    Article  CAS  Google Scholar 

  4. Liu Y-C, Le Ny A-LM, Schmidt J, Talmon Y, Chmelka BF, Lee Jr CT (2009) Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 25:5713–5724. https://doi.org/10.1021/la803588d

    Article  CAS  PubMed  Google Scholar 

  5. Dirksen M, Dargel C, Meier L, Brändel T, Hellweg T (2020) Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid Polym Sci 298:505–518. https://doi.org/10.1007/s00396-020-04632-5

    Article  CAS  Google Scholar 

  6. Arnould A, Gaillard C, Fameau A-L (2015) pH-responsive fatty acid self-assembly transition induced by UV light. J Colloid Interface Sci 458:147–154. https://doi.org/10.1016/j.jcis.2015.07.043

    Article  CAS  PubMed  Google Scholar 

  7. Lin Y, Qiao Y, Yan Y, Huang J (2009) Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems. Soft Matter 5:3047–3053. https://doi.org/10.1039/B906960G

    Article  CAS  Google Scholar 

  8. Ketner AM, Kumar R, Davies TS, Elder PW, Raghavan SR (2007) A simple class of photorheological fluids: surfactant solutions with viscosity tunable by light. J Am Chem Soc 129:1553–1559. https://doi.org/10.1021/ja065053g

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Zhang Z, Liu X (2020) pH-responsive viscoelastic fluid formed by cleavable sodium hexadecyl phthalate monoester alone. J Mol Liq 313:113514. https://doi.org/10.1016/j.molliq.2020.113514

    Article  CAS  Google Scholar 

  10. Su X, Cunningham MF, Jessop PG (2013) Switchable viscosity triggered by CO2 using smart worm-like micelles. Chem Commun 49:2655–2657. https://doi.org/10.1039/C3CC37816K

    Article  CAS  Google Scholar 

  11. Shibaev AV, Tamm MV, Molchanov VS, Rogachev AV, Kuklin AI, Dormidontova EE, Philippova OE (2014) How a viscoelastic solution of wormlike micelles transforms into a microemulsion upon absorption of hydrocarbon: new insight. Langmuir 30:3705–3714. https://doi.org/10.1021/la500484e

    Article  CAS  PubMed  Google Scholar 

  12. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M (2004) Control of viscoelasticity using redox reaction. J Am Chem Soc 126:12282–12283. https://doi.org/10.1021/ja0467162

    Article  CAS  PubMed  Google Scholar 

  13. Jiang J, Xu Q, Wang G, Cui Z (2018) Light and CO2/N2 dual stimuli-responsive wormlike micelles based on a zwitterionic surfactant and an azobenzene surfactant. Soft Matter 14:773–779

    Article  CAS  Google Scholar 

  14. Jiang Z, Jia K, Liu X, Dong J, Li X (2015) Multiple responsive fluids based on vesicle to wormlike micelle transitions by single-tailed pyrrolidone surfactants. Langmuir 31:11760–11768. https://doi.org/10.1021/acs.langmuir.5b02312

    Article  CAS  PubMed  Google Scholar 

  15. Zhao M, Gao M, Dai C, Zou C, Yang Z, Wu X, Liu Y, Wu Y, Fang S, Lv W (2017) Investigation of novel triple-responsive wormlike micelles. Langmuir 33:4319–4327. https://doi.org/10.1021/acs.langmuir.7b01011

    Article  CAS  PubMed  Google Scholar 

  16. Kumar R, Ketner AM, Raghavan SR (2010) Nonaqueous photorheological fluids based on light-responsive reverse wormlike micelles. Langmuir 26:5405–5411. https://doi.org/10.1021/la903834q

    Article  CAS  PubMed  Google Scholar 

  17. Yan H, Long Y, Song K, Tung C-H, Zheng L (2014) Photo-induced transformation from wormlike to spherical micelles based on pyrrolidinium ionic liquids. Soft Matter 10:115–121. https://doi.org/10.1039/C3SM52346B

    Article  CAS  PubMed  Google Scholar 

  18. Lin Y, Cheng X, Qiao Y, Yu C, Li Z, Yan Y, Huang J (2010) Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 6:902–908. https://doi.org/10.1039/B916721H

    Article  CAS  Google Scholar 

  19. Bi Y, Wei H, Hu Q, Xu W, Gong Y, Yu L (2015) Wormlike micelles with photo-responsive viscoelastic behavior formed by surface active ionic liquid/azobenzene derivative mixed solution. Langmuir 31:3789–3798. https://doi.org/10.1021/acs.langmuir.5b00107

    Article  CAS  PubMed  Google Scholar 

  20. Zhao M, Gao M, Dai C, Du M, Liu Y, Zou C, Tao J, Wang X, Wang T (2016) Investigation on a novel photo-responsive system formed by N-methyl-N-cetylpyrrolidinium bromide and ortho-methoxycinnamic. J Mol Liq 223:329–334. https://doi.org/10.1016/j.molliq.2016.08.063

    Article  CAS  Google Scholar 

  21. Song B, Hu Y, Zhao J (2009) A single-component photo-responsive fluid based on a gemini surfactant with an azobenzene spacer. J Colloid Interface Sci 333:820–822. https://doi.org/10.1016/j.jcis.2009.02.030

    Article  CAS  PubMed  Google Scholar 

  22. Aikawa S, Shrestha RG, Ohmori T, Fukukita Y, Tezuka Y, Endo T, Torigoe K, Tsuchiya K, Sakamoto K, Sakai K, Abe M, Sakai H (2013) Photorheological response of aqueous wormlike micelles with photocleavable surfactant. Langmuir 29:5668–5676. https://doi.org/10.1021/la4001939

    Article  CAS  PubMed  Google Scholar 

  23. Bi Y, Zhao L, Hu Q, Gao Y, Yu L (2015) Aggregation behavior of imidazolium-based surface-active ionic liquids with photo-responsive cinnamate counterions in the aqueous solution. Langmuir 31:12597–12608. https://doi.org/10.1021/acs.langmuir.5b03216

    Article  CAS  PubMed  Google Scholar 

  24. Kumar R, Srinivasa R, Raghavan SR (2009) Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. Soft Matter 5:797–803. https://doi.org/10.1039/B809452G

    Article  CAS  Google Scholar 

  25. Takahashi Y, Kishimoto M, Kondo Y (2016) Photoinduced formation of threadlike micelles from mixtures of a cationic surfactant and a stilbene amphiphile. J. Colloid Interf Sci 470:250–256. https://doi.org/10.1016/j.jcis.2016.02.053

    Article  CAS  Google Scholar 

  26. Li J, Zhao M, Zhou H, Gao H, Zheng L (2012) Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution. Soft Matter 8:7858–7864. https://doi.org/10.1039/C2SM25218J

    Article  CAS  Google Scholar 

  27. Wang D, Dong R, Long P, Hao J (2011) Photo-induced phase transition from multilamellar vesicles to wormlike micelles. Soft Matter 7:10713–10719. https://doi.org/10.1039/C1SM05949A

    Article  CAS  Google Scholar 

  28. Tu Y, Ye Z, Lian C, Shang Y, Teng H, Liu H (2018) UV-responsive behavior of multistate and multiscale self-assemblies constructed by gemini surfactant 12-3-12·2Br and trans-o-methoxy-cinnamate. Langmuir 34:12990–12999. https://doi.org/10.1021/acs.langmuir.8b02914

    Article  CAS  PubMed  Google Scholar 

  29. Zana R (2002) Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv Colloid Interf Sci 97:205–253. https://doi.org/10.1016/S0001-8686(01)00069-0

    Article  CAS  Google Scholar 

  30. Sharma R, Maryam A, Rakesh A, Mahajan K, Kraatz H-B (2017) Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv Colloid Interf Sci 248:35–68. https://doi.org/10.1016/j.cis.2017.07.032

    Article  CAS  Google Scholar 

  31. Sadeghi-Kiakhani M, Tehrani-Bagha AR (2015) Cationic ester-containing gemini surfactants as retarders in acrylic dyeing. Colloids Surfaces A 47:52–59. https://doi.org/10.1016/j.colsurfa.2015.03.030

    Article  CAS  Google Scholar 

  32. Tehrani-Bagha AR, Oskarsson H, van Ginkel CG, Holmberg K (2007) Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation. J. Colloid Interface Sci 312:444–452. https://doi.org/10.1016/j.jcis.2007.03.044

    Article  CAS  Google Scholar 

  33. Tehrani-Bagha AR, Kärnbratt J, Löfroth J-E, Holmberg K (2012) Cationic ester-containing gemini surfactants: determination of aggregation numbers by time-resolved fluorescence quenching. J Colloid Interface Sci 376:126–132. https://doi.org/10.1016/j.jcis.2012.02.053

    Article  CAS  PubMed  Google Scholar 

  34. Tehrani-Bagha AR, Holmberg K (2010) Cationic ester-containing gemini surfactants: physical-chemical properties. Langmuir 26:9276–9282. https://doi.org/10.1021/la1001336

    Article  CAS  PubMed  Google Scholar 

  35. Tehrani-Bagha AR, Holmberg K (2008) Cationic ester-containing gemini surfactants: adsorption at tailor-made surfaces monitored by SPR and QCM. Langmuir 24:6140–6145. https://doi.org/10.1021/la800009b

    Article  CAS  PubMed  Google Scholar 

  36. Liu Q, Ji X, Wang S, Zou W, Li J, Lv D, Yin B, Yan H, Wei X (2019) Effect of additives on surfactant micelle shape transformation: rheology and molecular dynamics studies. J Phys Chem C 123:2922–2932. https://doi.org/10.1021/acs.jpcc.8b10495

    Article  CAS  Google Scholar 

  37. Gujt J, Bešter-Rogač M, Spohr E (2016) Structure and stability of long rod-like dodecyltrimethylammonium chloride micelles in solutions of hydroxybenzoates: a molecular dynamics simulation study. Langmuir 32:8275–8286. https://doi.org/10.1021/acs.langmuir.6b02076

    Article  CAS  PubMed  Google Scholar 

  38. Heerdt G, Tranca I, Markvoort AJ, Szyja BM, Morgon NH, Hensen EJM (2018) Photoisomerization induced scission of rod-like micelles unravelled with multiscale modeling. J Colloid Interface Sci 510:357–367. https://doi.org/10.1016/j.jcis.2017.09.036

    Article  CAS  PubMed  Google Scholar 

  39. Rao KS, Singh T, Trivedi TJ, Kumar A (2011) Aggregation behavior of amino acid ionic liquid surfactants in aqueous media. J Phys Chem B 115:13847–13853. https://doi.org/10.1021/jp2076275

    Article  CAS  PubMed  Google Scholar 

  40. Nan Y-Q, Liu J-X, Zhang S-S, Chen D-J, Ye Q-X, Yuan C, Hao L-S (2020) Photo-responsive wormlike micellar systems based on mixed cationic/anionic surfactants and mixed photo-sensitive additives. Colloids Surfaces A 601:124988. https://doi.org/10.1016/j.colsurfa.2020.124988

    Article  CAS  Google Scholar 

  41. Nan Y-Q, Xu H-M, Yang N, Liu Q, Jia Y-F, Hao L-S (2015) Role of matching water affinities between oppositely charged headgroups in the rheological properties of aqueous mixed cationic/anionic surfactant systems. Colloids Surfaces A 482:125–137. https://doi.org/10.1016/j.colsurfa.2015.04.030

    Article  CAS  Google Scholar 

  42. Hao L-S, Deng Y-T, Zhou L-S, Ye H, Nan Y-Q, Hu P (2012) Mixed micellization and the dissociated Margules model for cationic/anionic surfactant systems. J Phys Chem B 116:5213–5225. https://doi.org/10.1021/jp300568k

    Article  CAS  PubMed  Google Scholar 

  43. Nan Y-Q, Hao L-S (2008) Salt-induced phase inversion in aqueous cationic/anionic surfactant two-phase systems. J Phys Chem B 112:12326–12337. https://doi.org/10.1021/jp805126j

    Article  CAS  PubMed  Google Scholar 

  44. Hao L-S, Xiao K, Hu Y, Zhang S-S, Liu J-X, Wei Y-Y, Chen Y, Nan Y-Q (2019) Mixed micellization of cationic/anionic surfactants: role of matching water affinities between oppositely charged headgroups and that between oppositely charged constituent counterions. J Phys Chem B 123:8140–8153. https://doi.org/10.1021/acs.jpcb.9b05982

    Article  CAS  PubMed  Google Scholar 

  45. Buhler E, Mendes E, Boltenhagen P, Munch JP, Zana R, Candau SJ (1997) Phase behavior of aqueous solutions of a dimeric surfactant. Langmuir 13:3096–3102. https://doi.org/10.1021/la0345800

    Article  CAS  Google Scholar 

  46. Nan Y-Q, He S-Q, Liu M-N, He H-Y, Hao L-S (2013) The influence of inorganic salts on the rheological properties of 1,3-propanediyl bis(dodecyl dimethylammonium bromide) and sodium dodecylsulfonate aqueous mixed system. Colloids Surfaces A 436:158–169. https://doi.org/10.1016/j.colsurfa.2013.06.032

    Article  CAS  Google Scholar 

  47. Wattebled L, Laschewsky A (2007) Effects of organic salt additives on the behavior of dimeric (“gemini”) surfactants in aqueous solution. Langmuir 23:10044–10052. https://doi.org/10.1021/la701542k

    Article  CAS  PubMed  Google Scholar 

  48. Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 18:3797–3803. https://doi.org/10.1021/la0115583

    Article  CAS  Google Scholar 

  49. Croce V, Cosgrove T, Maitland G, Hughes T, Karlsson G (2003) Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions. Langmuir 19:8536–8541. https://doi.org/10.1021/la0345800

    Article  CAS  Google Scholar 

  50. Lutz-Bueno V, Pasquino R, Liebi M, Kohlbrecher J, Fischer P (2016) Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: influence of surfactant headgroup structure and its counterion. Langmuir 32:4239–4250. https://doi.org/10.1021/acs.langmuir.6b00776

    Article  CAS  PubMed  Google Scholar 

  51. Xiao J-X, Sivars U, Tjerneld F (2000) Phase behavior and protein partitioning in aqueous two-phase systems of cationic–anionic surfactant mixtures. J Chromatogr B 743:327–338. https://doi.org/10.1016/S0378-4347(00)00214-0

    Article  CAS  Google Scholar 

  52. Hao L-S, Liu M-N, Xu H-M, Yang N, Nan Y-Q, Deng Y-T (2015) Partitioning of dyes, free anthraquinones, and tanshinones in aqueous two-phase systems of cationic/anionic surfactants. J Dispers Sci Technol 36:1047–1058. https://doi.org/10.1080/01932691.2014.950742

    Article  CAS  Google Scholar 

  53. Zana R, Talmon Y (1993) Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362:228–230 https://www.nature.com/articles/362228a0

    Article  CAS  Google Scholar 

  54. Danino D, Talmon Y, Zana R (1995) Alkanediyl-α,ω-bis(dimethylalky1ammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions. Langmuir 11:1448–1456. https://doi.org/10.1021/la00005a008

    Article  CAS  Google Scholar 

  55. Kabir-ud-Din SUS, Kumar S (2007) Viscometric studies on aqueous gemini micelles in the presence of additives. Colloids Surfaces A 301:209–213. https://doi.org/10.1016/j.colsurfa.2006.12.059

    Article  CAS  Google Scholar 

  56. Chen Q, Liu W, Liu H, Huang X, Shang Y, Liu H (2020) Molecular dynamics simulations and density functional theory on unraveling photo-responsive behavior of wormlike micelles constructed by 12-2-12·2Br- and trans-o-methoxy-cinnamate. Langmuir 36:9499–9509. https://doi.org/10.1021/acs.langmuir.0c01476

    Article  CAS  PubMed  Google Scholar 

  57. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311. https://doi.org/10.1016/j.ymeth.2004.03.021

    Article  CAS  PubMed  Google Scholar 

  58. Vlachy N, Jagoda-Cwiklik B, Vácha R, Touraud D, Jungwirth P, Kunz W (2009) Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv Colloid Interf Sci 146:42–47. https://doi.org/10.1016/j.cis.2008.09.010

    Article  CAS  Google Scholar 

  59. Guo P, Guo R (2010) Enhancement of wormlike micellar structure induced by O-carboxymethylchitosan with or without hydrophobic modifications. J Chem Eng Data 55:5023–5030. https://doi.org/10.1021/je100611z

    Article  CAS  Google Scholar 

  60. Kalur GC, Raghavan SR (2005) Anionic wormlike micellar fluids that display cloud points: rheology and phase behavior. J Phys Chem B 109:8599–8604. https://doi.org/10.1021/jp044102d

    Article  CAS  PubMed  Google Scholar 

  61. Hassan PA, Valaulikar BS, Manohar C, Kern F, Bourdieu L, Candau SJ (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12:4350–4357. https://doi.org/10.1021/la960269p

    Article  CAS  Google Scholar 

  62. Candau SJ, Hebraud P, Schmitt V, Lequeux F, Kern F, Zana R (1994) Rheological behaviour of worm-like micelles: effect of electrostatic interactions. Il Nuovo Cimento D 16:1401–1410. https://doi.org/10.1007/BF02462024

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (21576077) and the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University (KLCBTCMR201810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Qing Nan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 8183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, LS., Wei, YY., Yuan, C. et al. UV-responsive micellar systems and aqueous two-phase systems based on cationic ester-containing gemini surfactant and sodium trans-ortho-methoxycinnamate. Colloid Polym Sci 299, 1039–1054 (2021). https://doi.org/10.1007/s00396-021-04826-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04826-5

Keywords

Navigation