Allen (2017) Is our tech addiction ruining our skin? Put down your phone & pick up your SPF - your skin is in trouble. Glomourmagazine Aug. 16, 2016. https://www.glamourmagazine.co.uk/article/hev-rays-skincare. Accessed 10 May 2020.
Campiche, R., Curpen, S. J., Lutchmanen-Kolanthan, V., Gougeon, S., Cherel, M., Laurent, G., et al. (2020). Pigmentation effects of blue light irradiation on skin and how to protect against them. International Journal of Cosmetic Science, 42(4), 399–406. https://doi.org/10.1111/ics.12637
CAS
Article
PubMed
PubMed Central
Google Scholar
Lyons, A. B., Trullas, C., Kohli, I., Hamzavi, I. H., & Lim, H. W. Photoprotection beyond ultraviolet radiation: A review of tinted sunscreens. Journal of the American Academy of Dermatology. https://doi.org/10.1016/j.jaad.2020.04.079.
Zastrow, L., & Lademann, J. (2016). Light - instead of UV protection: new requirements for skin cancer prevention. Anticancer Research, 36(3), 1389–1393
CAS
PubMed
Google Scholar
SCHEER (2018). Opinion on Potential risks to human health of Light Emitting Diodes (LEDs). Brussels.
ANSES (2019). OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on the “effects on human health and the environment (fauna and flora) of systems using light-emitting diodes (LEDs)”. Maisons-Alfort Cedex.
Shanbhag, S., Nayak, A., Narayan, R., & Nayak, U. Y. (2019). Anti-aging and sunscreens: Paradigm shift in cosmetics. Advanced Pharmaceutical Bulletin, 9(3), 348–359. https://doi.org/10.15171/apb.2019.042
CAS
Article
PubMed
PubMed Central
Google Scholar
Schalka, S., de Paula Correa, M., Sawada, L. Y., Canale, C. C., & de Andrade, T. N. (2019). A novel method for evaluating sun visible light protection factor and pigmentation protection factor of sunscreens. Clinical, Cosmetic and Investigational Dermatology, 12, 605–616. https://doi.org/10.2147/CCID.S207256
CAS
Article
PubMed
PubMed Central
Google Scholar
Wabnik, M., Kockott, D., Garbe, B., Theek, C., Heinrich, U., Tronnier, H., et al. (2019). Application of an easy-to-perform high-energy and low-end visible light transmittance method and the influence of tinted sunscreens on high-energy/low-end visible light transmittance and infrared protection. Skin Pharmacology Physiology, 32(5), 244–253. https://doi.org/10.1159/000501131
CAS
Article
PubMed
Google Scholar
ICNIRP (2004). Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Physics, 87(2), 171–186. https://doi.org/10.1097/00004032-200408000-00006
Article
Google Scholar
Schroeder, P., Schieke, S. M., & Morita, A. (2006). Premature skin aging by infrared radiation, tobacco smoke and ozone. In B. A. Gilchrest & J. Krutmann (Eds.), Skin Aging. (pp. 45–53). Berlin, Heidelberg: Springer.
Chapter
Google Scholar
Kligman, L. H. (1982). Intensification of ultraviolet-induced dermal damage by infrared radiation. Archives of Dermatological Research, 272, 229–238
CAS
Article
Google Scholar
Kligman, L. H., & Kligman, A. M. (1986). The nature of photoaging: its prevention and repair. Photo-Dermatology, 3(4), 215–227
CAS
PubMed
Google Scholar
Pathak, M. A., Riley, F. C., & Fitzpatrick, T. B. (1962). Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light. The Journal of Investigative Dermatology, 39, 435–443
CAS
Article
Google Scholar
Spikes, J. D. (1989). Photosensitization. In K. C. Smith (Ed.), The Science of Photobiology. (pp. 79–110). New York: Plenum Press.
Chapter
Google Scholar
Mahmoud, B. H., Hexsel, C. L., Hamzavi, I. H., & Lim, H. W. (2008). Effects of visible light on the skin. Photochemistry and Photobiology, 84(2), 450–462. https://doi.org/10.1111/j.1751-1097.2007.00286.x
CAS
Article
PubMed
Google Scholar
Kleinpenning, M. M., Smits, T., Frunt, M. H., van Erp, P. E., van de Kerkhof, P. C., & Gerritsen, R. M. (2010). Clinical and histological effects of blue light on normal skin. Photodermatology, Photoimmunology and Photomedicine, 26(1), 16–21. https://doi.org/10.1111/j.1600-0781.2009.00474.x
Article
PubMed
Google Scholar
Sondenheimer, K., & Krutmann, J. (2018). Novel Means for Photoprotection. Front Medicine (Lausanne), 5, 162. https://doi.org/10.3389/fmed.2018.00162
Article
Google Scholar
Dong, K., Goyarts, E. C., Pelle, E., Trivero, J., & Pernodet, N. (2019). Blue light disrupts the circadian rhythm and create damage in skin cells. International Journal of Cosmetic Science, 41(6), 558–562. https://doi.org/10.1111/ics.12572
CAS
Article
PubMed
Google Scholar
Narla, S., Kohli, I., Hamzavi, I. H., & Lim, H. W. (2020). Visible light in photodermatology. Photochemical & Photobiological Sciences, 19(1), 99–104. https://doi.org/10.1039/c9pp00425d
CAS
Article
Google Scholar
IARC (2020). Monographs on the identification of carcinogenic hazards to humans. https://monographs.iarc.fr/list-of-classifications. Accessed 16 April 2020.
ICNIRP (2013). ICNIRP Guidelines on limit of exposure to incoherent visible and infrared radiation. Health Physics, 105(1), 74–96. https://doi.org/10.1097/HP.0b013e318289a611.
ISO, CIE. (1999). ISO 17166 ⁄ CIE S007: Erythema reference action spectrum and standard erythema dose. Vienna: CIE Central Bureau.
Google Scholar
Williamson, S. J., Cummins, H.Z. (1983). Light and Color in Nature and Art. Wiley.
Hulsen, G., Grobner, J., Nevas, S., Sperfeld, P., Egli, L., Porrovecchio, G., et al. (2016). Traceability of solar UV measurements using the Qasume reference spectroradiometer. Applied Optics, 55(26), 7265–7275. https://doi.org/10.1364/ao.55.007265
CAS
Article
PubMed
Google Scholar
CEN (2005). EN 14255–2 : Measurement and assessment of personal exposures to incoherent optical radiation — Part 2: Visible and infrared radiation emitted by artificial sources in the workplace. Brussels.
IEC (2006). IEC 62471 Photobiological safety of lamps and lamp systems. Geneva.
CEN (2011). EN 12464–1 Light and lighting, Lighting of work places, Part 1: Indoor work places. Brussels.
Mayer, B., & Kylling, A. (2005). Technical note: The libRadtran software package for radiative transfer calculations–description and examples of use. Atmospheric Chemistry and Physics, 5, 1855–1877
CAS
Article
Google Scholar
DSA (2020). UVNRPA, dose data from the Norwegian UV-network, Norwegian Radiation and Nuclear Safety Authority (DSA). https://github.com/uvnrpa. Accessed 11 May 2020.
NASA (2020). Aura Validation Data Center. https://avdc.gsfc.nasa.gov. Accessed 11 May 2020.
Mahmoud, B. H., Ruvolo, E., Hexsel, C. L., Liu, Y., Owen, M. R., Kollias, N., et al. (2010). Impact of long-wavelength UVA and visible light on melanocompetent skin. The Journal of Investigative Dermatology, 130(8), 2092–2097. https://doi.org/10.1038/jid.2010.95
CAS
Article
PubMed
Google Scholar
Randeberg, L. L., Roll, E. B., Nilsen, L. T., Christensen, T., & Svaasand, L. O. (2005). In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index. Acta Paediatrica, 94(1), 65–71. https://doi.org/10.1111/j.1651-2227.2005.tb01790.x
Article
PubMed
Google Scholar
Regazzetti, C., Sormani, L., Debayle, D., Bernerd, F., Tulic, M. K., De Donatis, G. M., et al. (2018). Melanocytes sense blue light and regulate pigmentation through Opsin-3. The Journal of Investigative Dermatology, 138(1), 171–178. https://doi.org/10.1016/j.jid.2017.07.833
CAS
Article
PubMed
Google Scholar
Avola, R., Graziano, A. C. E., Pannuzzo, G., Bonina, F., & Cardile, V. (2019). Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. Journal of Cellular Physiology, 234(6), 9065–9076. https://doi.org/10.1002/jcp.27584
CAS
Article
PubMed
Google Scholar
Hoffmann-Dorr, S., Greinert, R., Volkmer, B., & Epe, B. (2005). Visible light (>395 nm) causes micronuclei formation in mammalian cells without generation of cyclobutane pyrimidine dimers. Mutation Research, 572(1–2), 142–149. https://doi.org/10.1016/j.mrfmmm.2005.01.011
CAS
Article
PubMed
Google Scholar
Kielbassa, C., Roza, L., & Epe, B. (1997). Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis, 18(4), 811–816. https://doi.org/10.1093/carcin/18.4.811
CAS
Article
PubMed
Google Scholar
Kvam, E., & Tyrrell, R. M. (1997). Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis, 18(12), 2379–2384. https://doi.org/10.1093/carcin/18.12.2379
CAS
Article
PubMed
Google Scholar
Liebel, F., Kaur, S., Ruvolo, E., Kollias, N., & Southall, M. D. (2012). Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. The Journal of Investigative Dermatology, 132(7), 1901–1907. https://doi.org/10.1038/jid.2011.476
CAS
Article
PubMed
Google Scholar
Liebmann, J., Born, M., & Kolb-Bachofen, V. (2010). Blue-light irradiation regulates proliferation and differentiation in human skin cells. The Journal of Investigative Dermatology, 130(1), 259–269. https://doi.org/10.1038/jid.2009.194
CAS
Article
PubMed
Google Scholar
Mamalis, A., Garcha, M., & Jagdeo, J. (2015). Light emitting diode-generated blue light modulates fibrosis characteristics: Fibroblast proliferation, migration speed, and reactive oxygen species generation. Lasers in Surgery and Medicine, 47(2), 210–215. https://doi.org/10.1002/lsm.22293
Article
PubMed
PubMed Central
Google Scholar
Oh, P. S., Na, K. S., Hwang, H., Jeong, H. S., Lim, S., Sohn, M. H., et al. (2015). Effect of blue light emitting diodes on melanoma cells: Involvement of apoptotic signaling. Journal of Photochemistry and Photobiology B: Biology, 142, 197–203. https://doi.org/10.1016/j.jphotobiol.2014.12.006
CAS
Article
Google Scholar
Rascalou, A., Lamartine, J., Poydenot, P., Demarne, F., & Bechetoille, N. (2018). Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light. Journal of Dermatological Science. https://doi.org/10.1016/j.jdermsci.2018.04.018
Article
PubMed
Google Scholar
Gorton (2010). Biological Action Spectra, Holly L. Gorton in Photobiological Sciences on-line. http://photobiology.info/Gorton.html. Accessed 11 May 2020.
Spitschan, M., Stefani, O., Blattner, P., Gronfier, C., Lockley, S. W., & Lucas, R. J. (2019). How to report light exposure in human chronobiology and sleep research experiments. Clocks Sleep, 1(3), 280–289. https://doi.org/10.3390/clockssleep1030024
Article
PubMed
PubMed Central
Google Scholar
Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedingd of National Academy Science of United States of America, 103(37), 13765–13770. https://doi.org/10.1073/pnas.0604213103
CAS
Article
Google Scholar
O’Hagan, J. B., Khazova, M., & Price, L. L. (2016). Low-energy light bulbs, computers, tablets and the blue light hazard. Eye (London, England), 30(2), 230–233. https://doi.org/10.1038/eye.2015.261
CAS
Article
Google Scholar
Bullough, J. D., Bierman, A., & Rea, M. S. (2019). Evaluating the blue-light hazard from solid state lighting. International Journal of Occupational Safety and Ergonomics, 25(2), 311–320. https://doi.org/10.1080/10803548.2017.1375172
Article
PubMed
Google Scholar
Bruzell, E. M., Christensen, T., & Johnsen, B. (2015). Sufficient øjenbeskyttelse reducerer risikoen for øjenskader fra hærdelamper (Appropriate eye protection filters prevent ocular damage from curing light). [Research article]. Tandlaegebladet, 119(5), 368–378.
Ibbotson, S. (2018). Drug and chemical induced photosensitivity from a clinical perspective. Photochemical & Photobiological Sciences, 17(12), 1885–1903. https://doi.org/10.1039/c8pp00011e
CAS
Article
Google Scholar
EMA (2014). European public assessment report (EPAR) for Scenesse. https://www.ema.europa.eu/en/medicines/human/EPAR/scenesse. Accessed 11 May 2020.
Bruzell, E. M., Johnsen, B., Aalerud, T. N., & Christensen, T. (2007). Evaluation of eye protection filters for use with dental curing and bleaching lamps. Journal of Occupational and Environmental Hygiene, 4(6), 432–439. https://doi.org/10.1080/15459620701354218
Article
PubMed
Google Scholar
McKenzie, R. L., & Lucas, R. M. (2018). Reassessing impacts of extended daily exposure to low level solar UV radiation. Science and Reports, 8(1), 13805. https://doi.org/10.1038/s41598-018-32056-3
CAS
Article
Google Scholar