Skip to main content

Advertisement

Log in

4-Hydroxyl-oxoisoaporphine, one small molecule as theranostic agent for simultaneous fluorescence imaging and photodynamic therapy as type II photosensitizer

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Oxoisoaporphine (OA) is a plant phototoxin isolated from Menispermaceae, however, its weak fluorescence and low water solubility impede it for theranostics. We developed here 4-hydroxyl-oxoisoaporphine (OHOA), which has good singlet oxygen-generating ability (0.06), strong fluorescence (0.72) and improved water solubility. OHOA displays excellent fluorescence for cell imaging and exhibits light-induced cytotoxicity against cancer cell. In vitro model of human cervical carcinoma (HeLa) cell proved that singlet oxygen generated by OHOA triggered photosensitized oxidation reactions and exert toxic effect on tumor cells. The MTT assay using HeLa cells verified the low cytotoxicity of OHOA in the dark and high phototoxicity. Confocal experiment indicates that OHOA mainly distributes in mitochondria and western blotting demonstrated that OHOA induces cell apoptosis via the mitochondrial pathway in the presence of light. Our molecule provides an alternative choice as a theranostic agent against cancer cells which usually are in conflict with each other for most traditional theranostic agents.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article and supplementary information. The data used to support the findings of this study are also available from the corresponding author upon request.

References

  1. Lan, M., Zhao, S., Liu, W., Lee, C.-S., Zhang, W., et al. (2019). Photosensitizers for photodynamic therapy. Advanced Healthcare Materials, 8, 1900132.

    Article  Google Scholar 

  2. Qin, Y., Chen, L.-J., Dong, F., Jiang, S.-T., Yin, G.-Q., et al. (2019). Light-controlled generation of singlet oxygen within a discrete dual-stage metallacycle for cancer therapy. Journal of the American Chemical Society, 141, 8943–8950.

    Article  CAS  PubMed  Google Scholar 

  3. dos Santos, A. F., de Almeida, D. R. Q., Terra, L. F., Baptista, M. S., & Labriola, L. (2019). Photodynamic therapy in cancer treatment - an update review. Journal of Cancer Metastasis and Treatment, 5, 25.

    Google Scholar 

  4. Yu, G., Zhu, B., Shao, L., Zhou, J., Saha, M. L., et al. (2019). Host−guest complexation-mediated codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proceedings of the National Academy of Sciences, 116, 6618.

    Article  CAS  Google Scholar 

  5. Roy, I., Bobbala, S., Young, R. M., Beldjoudi, Y., Nguyen, M. T., et al. (2019). A supramolecular approach for modulated photoprotection, lysosomal delivery, and photodynamic activity of a photosensitizer. Journal of the American Chemical Society, 141, 12296–12304.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, J., Cao, Q., Hu, W.-L., Ye, R.-R., He, L., et al. (2017). Theranostic tempo-functionalized Ru(II) complexes as photosensitizers and oxidative stress indicators. Dalton Transactions, 46, 445–454.

    Article  CAS  PubMed  Google Scholar 

  7. Karges, J., Heinemann, F., Maschietto, F., Patra, M., Blacque, O., et al. (2019). A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorganic and Medicinal Chemistry, 27, 2666–2675.

    Article  CAS  PubMed  Google Scholar 

  8. Skovsen, E., Snyder, J. W., Lambert, J. D. C., & Ogilby, P. R. (2005). Lifetime and diffusion of singlet oxygen in a cell. The Journal of Physical Chemistry B, 109, 8570–8573.

    Article  CAS  PubMed  Google Scholar 

  9. Li, C., Wang, Y., Lu, Y., Guo, J., Zhu, C., et al. (2020). An iridium(III)-palladium(II) metal-organic cage for efficient mitochondria-targeted photodynamic therapy. Chinese Chemical Letters, 31, 1183–1187.

    Article  CAS  Google Scholar 

  10. He, Z., Zhang, Y., Khan, A. R., Ji, J., Yu, A., et al. (2020). A novel progress of drug delivery system for organelle targeting in tumour cells. Journal of Drug Targeting, 29, 12–28.

    Article  PubMed  Google Scholar 

  11. Lv, W., Zhang, Z., Zhang, K. Y., Yang, H., Liu, S., et al. (2016). A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angewandte Chemie International Edition, 55, 9947–9951.

    Article  CAS  PubMed  Google Scholar 

  12. Jana, B., Thomas, A. P., Kim, S., Lee, I. S., Choi, H., et al. (2020). Self-assembly of mitochondria-targeted photosensitizer to increase photostability and photodynamic therapeutic efficacy in hypoxia. Chemistry-A European Journal, 26, 10695–10701.

    Article  CAS  Google Scholar 

  13. Sainuddin, T., McCain, J., Pinto, M., Yin, H., Gibson, J., et al. (2016). Organometallic Ru(II) photosensitizers derived from π-expansive cyclometalating ligands: surprising theranostic PDT effects. Inorganic Chemistry, 55, 83–95.

    Article  CAS  PubMed  Google Scholar 

  14. Binns, T. C., Ayala, A. X., Grimm, J. B., Tkachuk, A. N., Castillon, G. A., et al. (2020). Rational design of bioavailable photosensitizers for manipulation and imaging of biological systems. Cell Chemical Biology, 27, 1063-1072.e7.

    Article  CAS  PubMed  Google Scholar 

  15. Lovell, J. F., Liu, T. W. B., Chen, J., & Zheng, G. (2010). Activatable photosensitizers for imaging and therapy. Chemical Reviews, 110, 2839–2857.

    Article  CAS  PubMed  Google Scholar 

  16. Espinoza, C., Trigos, Á., & Medina, M. E. (2016). Theoretical study on the photosensitizer mechanism of phenalenone in aqueous and lipid media. The Journal of Physical Chemistry A, 120, 6103–6110.

    Article  CAS  PubMed  Google Scholar 

  17. Flors, C., & Nonell, S. (2006). Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. Accounts of Chemical Research, 39, 293–300.

    Article  CAS  PubMed  Google Scholar 

  18. Hölscher, D., Dhakshinamoorthy, S., Alexandrov, T., Becker, M., Bretschneider, T., et al. (2014). Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis. Proceedings of the National Academy of Sciences, 111, 105.

    Article  Google Scholar 

  19. Späth, A., Leibl, C., Cieplik, F., Lehner, K., Regensburger, J., et al. (2014). Improving photodynamic inactivation of bacteria in dentistry: highly effective and fast killing of oral key pathogens with novel tooth-colored type-II photosensitizers. Journal of Medicinal Chemistry, 57, 5157–5168.

    Article  PubMed  Google Scholar 

  20. Song, R., Feng, Y., Wang, D., Xu, Z., Li, Z., et al. (2017). Phytoalexin phenalenone derivatives inactivate mosquito larvae and root-knot nematode as type-ii photosensitizer. Scientific Reports, 7, 42058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sobarzo-Sánchez, E., Soto, P. G., Valdés Rivera, C., Sánchez, G., & Hidalgo, M. E. J. M. (2012). Applied biological and physicochemical activity of isoquinoline alkaloids: oxoisoaporphine and boldine. Molecules, 17, 10958–10970.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang, X., Ye, W., Zhao, S., & Che, C.-T. (2004). Isoquinoline and isoindole alkaloids from Menispermum dauricum. Phytochemistry, 65, 929–932.

    Article  CAS  PubMed  Google Scholar 

  23. Wei, J., Chen, J., Liang, X., & Guo, X. (2016). Microwave-assisted extraction in combination with HPLC-UV for quantitative analysis of six bioactive oxoisoaporphine alkaloids in Menispermum dauricum DC. Biomedical Chromatography., 30, 241–248.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, J., Chen, L., & Sun, J. (2018). Oxoisoaporphine alkaloids: prospective anti-Alzheimer’s disease, anticancer, and antidepressant agents. ChemMedChem, 13, 1262–1274.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Z.-F., Qin, Q.-P., Qin, J.-L., Liu, Y.-C., Huang, K.-B., et al. (2015). Stabilization of G-quadruplex DNA, inhibition of telomerase activity, and tumor cell apoptosis by organoplatinum(II) complexes with oxoisoaporphine. Journal of Medicinal Chemistry, 58, 2159–2179.

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez-Arce, E., Cancino, P., Arias-Calderón, M., Silva-Matus, P., & Saldías, M. J. M. (2020). Oxoisoaporphines and aporphines: versatile molecules with anticancer effects. Molecules, 25, 108.

    Article  Google Scholar 

  27. Qin, J.-L., Qin, Q.-P., Wei, Z.-Z., Yu, Y.-C., Meng, T., et al. (2016). Stabilization of c-myc G-Quadruplex DNA, inhibition of telomerase activity, disruption of mitochondrial functions and tumor cell apoptosis by platinum(II) complex with 9-amino-oxoisoaporphine. European Journal of Medicinal Chemistry, 124, 417–427.

    Article  CAS  PubMed  Google Scholar 

  28. Qin, Q.-P., Qin, J.-L., Meng, T., Lin, W.-H., Zhang, C.-H., et al. (2016). High in vivo antitumor activity of cobalt oxoisoaporphine complexes by targeting g-quadruplex DNA, telomerase and disrupting mitochondrial functions. European Journal of Medicinal Chemistry, 124, 380–392.

    Article  CAS  PubMed  Google Scholar 

  29. Qin, Q.-P., Qin, J.-L., Meng, T., Yang, G.-A., Wei, Z.-Z., et al. (2016). Preparation of 6/8/11-amino/chloro-oxoisoaporphine and group-10 metal complexes and evaluation of their in vitro and in vivo antitumor activity. Scientific Reports, 6, 37644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, L., Luo, Y., Pu, Z., Kong, X., Fu, X., et al. (2017). Oxoisoaporphine alkaloid derivative 8–1 reduces aβ1-42 secretion and toxicity in human cell and caenorhabditis elegans models of Alzheimer’s disease. Neurochemistry International, 108, 157–168.

    Article  CAS  PubMed  Google Scholar 

  31. Tang, H., Zhao, L.-Z., Zhao, H.-T., Huang, S.-L., Zhong, S.-M., et al. (2011). Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. European Journal of Medicinal Chemistry, 46, 4970–4979.

    Article  CAS  PubMed  Google Scholar 

  32. Wei, S., Chen, W., Qin, J., Huangli, Y., Wang, L., et al. (2016). Multitarget-directed oxoisoaporphine derivatives: anti-acetylcholinesterase, anti-β-amyloid aggregation and enhanced autophagy activity against Alzheimer’s disease. Bioorganic and Medicinal Chemistry, 24, 6031–6039.

    Article  CAS  PubMed  Google Scholar 

  33. Sobarzo-Sánchez, E., Bilbao-Ramos, P., Dea-Ayuela, M., González-Díaz, H., Yañez, M., et al. (2013). Synthetic oxoisoaporphine alkaloids: in vitro, in vivo and in silico assessment of antileishmanial activities. PLoS ONE, 8, e77560.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosquete, L. I., Cabrera-Serra, M. G., Piñero, J. E., Martín-Rodríguez, P., Fernández-Pérez, L., et al. (2010). Synthesis and in vitro antiprotozoal evaluation of substituted phenalenone analogues. Bioorganic and Medicinal Chemistry, 18, 4530–4534.

    Article  CAS  PubMed  Google Scholar 

  35. Tang, H., Wei, Y.-B., Zhang, C., Ning, F.-X., Qiao, W., et al. (2009). Synthesis, biological evaluation and molecular modeling of oxoisoaporphine and oxoaporphine derivatives as new dual inhibitors of acetylcholinesterase/butyrylcholinesterase. European Journal of Medicinal Chemistry, 44, 2523–2532.

    Article  CAS  PubMed  Google Scholar 

  36. Ning, F. X., Weng, X., Huang, S. L., Gu, L. J., Huang, Z. S., et al. (2011). A facile and efficient method for hydroxylation of azabenzanthrone compounds. Chinese Chemical Letters, 22, 41–44.

    Article  CAS  Google Scholar 

  37. Wang, Y., Wang, Q., Zhang, H., Wu, Y., Jia, Y., et al. (2020). CTAB-assisted solvothermal construction of hierarchical Bi2MoO6/Bi5O7Br with improved photocatalytic performances. Separation and Purification Technology, 242, 116775.

    Article  CAS  Google Scholar 

  38. Jia, Y., Liu, P., Wang, Q., Wu, Y., Cao, D., et al. (2021). Construction of Bi2S3-BiOBr nanosheets on TiO2 NTA as the effective photocatalysts: pollutant removal, photoelectric conversion and hydrogen generation. Journal of Colloid and Interface Science, 585, 459–469.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Q., Li, H., Yu, X., Jia, Y., Chang, Y., et al. (2020). Morphology regulated Bi2WO6 nanoparticles on TiO2 nanotubes by solvothermal Sb3+ doping as effective photocatalysts for wastewater treatment. Electrochimica Acta, 330, 135167.

    Article  CAS  Google Scholar 

  40. Cao, D., Wang, Q., Wu, Y., Zhu, S., Jia, Y., et al. (2020). Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays. Separation and Purification Technology, 250, 117132.

    Article  CAS  Google Scholar 

  41. Ando, K., & Fujita, T. (2009). Metabolic syndrome and oxidative stress. Free Radical Biology and Medicine, 47, 213–218.

    Article  CAS  PubMed  Google Scholar 

  42. Xie, L., Zhu, X., Hu, Y., Li, T., Gao, Y., et al. (2008). Mitochondrial DNA oxidative damage triggering mitochondrial dysfunction and apoptosis in high glucose-induced HRECs. Investigative Ophthalmology and Visual Science, 49, 4203–4209.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financial supported by National Key Research and Development Program of China (2018YFD0200100), National Natural Science Foundation of China (No. 21877039), Science and Technology Commission of Shanghai Municipality (16391902300) and Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-02-E00037).

Author information

Authors and Affiliations

Authors

Contributions

XS designed experiments; QX and YJ carried out experiments; MC analyzed experimental results. QX and XS wrote the manuscript.

Corresponding author

Correspondence to Xusheng Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 820 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Ji, Y., Chen, M. et al. 4-Hydroxyl-oxoisoaporphine, one small molecule as theranostic agent for simultaneous fluorescence imaging and photodynamic therapy as type II photosensitizer. Photochem Photobiol Sci 20, 501–512 (2021). https://doi.org/10.1007/s43630-021-00030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00030-0

Keywords

Navigation