Skip to main content
Log in

pH-controlled mechanism of photocatalytic RhB degradation over g-C3N4 under sunlight irradiation

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photocatalysis of dye degradation is one of green and cheap technologies for solving environmental pollution. Whereas it is rarely concerned that the degradation process varied with the change of solution condition, this work studied the influence of hydrion in the solution on the photodegradation process of Rhodamine B (RhB) over g-C3N4. The photocatalytic activity of RhB degradation was enhanced gradually with increased hydrion content in the system. The efficiency for RhB degradation over g-C3N4 in weak acidic system with interference of multiple metal-ions still reached near 95% after 30 min of natural sunlight irradiation. A large amount of oxidation species and the hydroxylation mineralization process were induced by increasing the hydrion concentration. Two degradation processes for deethylation of four ethyl groups and the direct chromophoric degradation were discovered and proved by multifarious intermediates in different systems using the ESR technique, LC/MS and GC/MS analysis. In addition, the photosensitization played a critical role in the RhB degradation. A feasible degradation mechanism was proposed for the RhB degradation based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1.
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang, Q., Ye, Z., & Xiao, X. (2015). Recent progress in photocathodes for hydrogen evolution. Journal of Materials Chemistry A, 3, 15824–15837.

    Article  CAS  Google Scholar 

  2. Tu, W., Zhou, Y., & Zou, Z. (2014). Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 26, 4607–4626.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, T., Luo, Z., Li, C., & Gong, J. (2014). Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chemical Society Reviews, 43, 7469–7484.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, D., Zhang, X., & Lee, A. F. (2015). Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals. Journal of Materials Chemistry A, 3, 14487–14516.

    Article  CAS  Google Scholar 

  5. Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., & Chen, X. (2015). Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 3, 2485–2534.

    Article  CAS  Google Scholar 

  6. Wang, Y., Zhang, F., Yang, M., Wang, Z., Ren, Y., Cui, J., et al. (2019). Synthesis of porous MoS2/CdSe/TiO2 photoanodes for photoelectrochemical water splitting. Microporous and Mesoporous Materials, 284, 403–409.

    Article  CAS  Google Scholar 

  7. X. Xiao, S. Tu, M. Lu, H. Zhong, C. Zheng, X. Zuo & J. Nan, Discussion on the reaction mechanism of the photocatalytic degradation of organic contaminants from a viewpoint of semiconductor photo-induced electrocatalysis, Applied Catalysis B:, 2016, 198, 124–132.

  8. Liang, R., Jing, F., Shen, L., Qin, N., & Wu, L. (2015). MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. Journal of Hazardous Materials, 287, 364–372.

    Article  CAS  PubMed  Google Scholar 

  9. W. Lu, T. Xu, Y. Wang, H. Hu, N. Li, X. Jiang and W. Chen, Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation, Applied Catalysis B:, 2016, 180, 20–28.

  10. Park, H., Kim, H.-I., Moon, G.-H., & Choi, W. (2016). Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & Environmental Science, 9, 411–433.

    Article  CAS  Google Scholar 

  11. Qiu, P., Yao, J., Chen, H., Jiang, F., & Xie, X. (2016). Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst. Journal of Hazardous Materials, 317, 158–168.

    Article  CAS  PubMed  Google Scholar 

  12. Willkomm, J., Orchard, K. L., Reynal, A., Pastor, E., Durrant, J. R., & Reisner, E. (2016). Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chemical Society Reviews, 45, 9–23.

    Article  CAS  PubMed  Google Scholar 

  13. Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K.-H., Akter, T., & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International, 91, 94–103.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, W., Jia, B., Wang, Q., & Dionysiou, D. (2015). Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review. Journal of Nanoparticle Research, 17, 221.

    Article  CAS  Google Scholar 

  15. Liu, S., Sun, H., Ang, H. M., Tade, M. O., & Wang, S. (2016). Integrated oxygen-doping and dye sensitization of graphitic carbon nitride for enhanced visible light photodegradation. Journal of Colloid and Interface Science, 476, 193–199.

    Article  CAS  PubMed  Google Scholar 

  16. Gong, X., & Teoh, W. Y. (2015). Modulating charge transport in semiconductor photocatalysts by spatial deposition of reduced graphene oxide and platinum. Journal of Catalysis, 332, 101–111.

    Article  CAS  Google Scholar 

  17. Hamdy, M. S., Saputera, W. H., Groenen, E. J., & Mul, G. (2014). A novel TiO2 composite for photocatalytic wastewater treatment. Journal of Catalysis, 310, 75–83.

    Article  CAS  Google Scholar 

  18. Tokode, R. Prabhu, L. A. Lawton and P. K. J. Robertson, Effect of controlled periodic-based illumination on the photonic efficiency of photocatalytic degradation of methyl orange, Journal of Catalysis, 2012, 290, 138–142.

  19. Qian, Y., Wang, L., Du, J., Yang, H., Li, M., Wang, Y., & Kang, D. J. (2021). A high catalytic activity photocatalysts based on porous metal sulfides/TiO2 heterostructures. Advanced Materials Interfaces, 7, 2001627.

    Google Scholar 

  20. L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo and G. Zeng, Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid, Applied Catalysis B, 2010, 94, 142–149.

  21. Cui, Y., Ding, Z., Liu, P., Antonietti, M., Fu, X., & Wang, X. (2012). Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Physical Chemistry Chemical Physics, 14, 1455–1462.

    Article  CAS  PubMed  Google Scholar 

  22. J. Hu, W. Fan, W. Ye, C. Huang and X. Qiu, Insights into the photosensitivity activity of BiOCl under visible light irradiation, Applied Catalysis B, 2014, 158–159, 182–189.

  23. Merka, V. Yarovyi, D. W. Bahnemann and M. Wark, pH-Control of the photocatalytic degradation mechanism of rhodamine B over Pb3Nb4O13, Journal of Physical Chemistry C, 2011, 115, 8014–8023.

  24. Fang, S., Lv, K., Li, Q., Ye, H., Du, D., & Li, M. (2015). Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4. Applied Surface Science, 358, 336–342.

    Article  CAS  Google Scholar 

  25. Yue, X., Liu, Z., Zhang, Q., Li, X., Hao, F., Wei, J., & Guo, W. (2015). Oxidative degradation of rhodamine B in aqueous solution using Fe/PANI nanoparticles in the presence of AQS serving as an electron shuttle. Desalination and Water Treatment, 57, 15190–15199.

    Article  CAS  Google Scholar 

  26. Wei, Z., Spinney, R., Ke, R., Yang, Z., & Xiao, R. (2016). Effect of pH on the sonochemical degradation of organic pollutants. Environmental Chemistry Letters, 14, 163–182.

    Article  CAS  Google Scholar 

  27. Guo, Z., Zhang, J., & Liu, H. (2016). Ultra-high rhodamine B adsorption capacities from an aqueous solution by activated carbon derived from Phragmites australis doped with organic acid by phosphoric acid activation. RSC Advances, 6, 40818–40827.

    Article  CAS  Google Scholar 

  28. Tian, J., Olajuyin, A. M., Mu, T., Yang, M., & Xing, J. (2016). Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-fenton process. Environmental Science and Pollution Research, 23, 11574–11583.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, X., Ji, H., Chang, F., & Luo, Y. (2014). Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation. Catalysis Today, 224, 34–40.

    Article  CAS  Google Scholar 

  30. Wu, H., Qian, Y., Cui, J., Chai, Q., Du, J., Zhang, L., et al. (2019). Enhanced interfacial charge transfer and separation rate based on sub 10 nm MoS2 nanoflakes in situ grown on graphitic-C3N4. Advanced Materials Interfaces, 6, 1900554.

    Article  CAS  Google Scholar 

  31. Ye, S., Wang, R., Wu, M.-Z., & Yuan, Y.-P. (2015). A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Applied Surface Science, 358, 15–27.

    Article  CAS  Google Scholar 

  32. Zhu, J., Xiao, P., Li, H., & Carabineiro, S. A. (2014). Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Applied Materials & Interfaces, 6, 16449–16465.

    Article  CAS  Google Scholar 

  33. Sui, Y., Liu, J., Zhang, Y., Tian, X., & Chen, W. (2013). Dispersed conductive polymer nanoparticles on graphitic carbon nitride for enhanced solar-driven hydrogen evolution from pure water. Nanoscale, 5, 9150–9155.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y., Shi, R., Lin, J., & Zhu, Y. (2011). Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy & Environmental Science, 4, 2922–2929.

    Article  CAS  Google Scholar 

  35. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., et al. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8, 76–80.

    Article  CAS  PubMed  Google Scholar 

  36. Li, X., Zhang, J., Shen, L., Ma, Y., Lei, W., Cui, Q., & Zou, G. (2008). Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Applied Physics A: Materials Science & Processing, 94, 387–392.

    Article  CAS  Google Scholar 

  37. Niu, P., Liu, G., & Cheng, H.-M. (2012). Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. Journal of Physical Chemistry C, 116, 11013–11018.

    Article  CAS  Google Scholar 

  38. Q. Lin, L. Li, S. Liang, M. Liu, J. Bi and L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Applied Catalysis B, 2015, 163, 135–142.

  39. Li, J., Shen, B., Hong, Z., Lin, B., Gao, B., & Chen, Y. (2012). A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chemical Communications, 48, 12017–12019.

    Article  CAS  PubMed  Google Scholar 

  40. Yu, J., Wang, K., Xiao, W., & Cheng, B. (2014). Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. Physical Chemistry Chemical Physics: PCCP, 16, 11492–11501.

    Article  CAS  PubMed  Google Scholar 

  41. Dong, G., Ai, Z., & Zhang, L. (2014). Efficient anoxic pollutant removal with oxygen functionalized graphitic carbon nitride under visible light. RSC Advances., 4, 5553–5560.

    Article  CAS  Google Scholar 

  42. G. Dong, Y. Zhang, Q. Pan and J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, Journal of Photochemistry and Photobiology C, 2014, 20, 33–50.

  43. Wang, J. C., Yao, H. C., Fan, Z. Y., Zhang, L., Wang, J. S., Zang, S. Q., & Li, Z. J. (2016). Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Applied Materials & Interfaces, 8, 3765–3775.

    Article  CAS  Google Scholar 

  44. Watarai, H., & Funaki, F. (1996). Total internal reflection fluorescence measurements of protonation equilibria of rhodamine B and octadecylrhodamine B at a toluene/water interface. Langmuir, 12, 6717–6720.

    Article  CAS  Google Scholar 

  45. Hashemzadeh, F., Gaffarinejad, A., & Rahimi, R. (2015). Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decolorization under visible light irradiation. Journal of Hazardous Materials, 286, 64–74.

    Article  CAS  PubMed  Google Scholar 

  46. Li, W., Li, D., Meng, S., Chen, W., Fu, X., & Shao, Y. (2011). Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites. Environmental Science and Technology, 45, 2987–2993.

    Article  CAS  PubMed  Google Scholar 

  47. L. Hu, F. Yang, W. Lu, Y. Hao and H. Yuan, Heterogeneous activation of oxone with CoMg/SBA-15 for the degradation of dye Rhodamine B in aqueous solution, Applied Catalysis B, 2013, 134–135, 7–18.

  48. Soltani, T., & Entezari, M. H. (2013). Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chemical Engineering Journal, 223, 145–154.

    Article  CAS  Google Scholar 

  49. Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2011). Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal, 169, 126–134.

    Article  CAS  Google Scholar 

  50. Yan, S. C., Lv, S. B., Li, Z. S., & Zou, Z. G. (2010). Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Transactions, 39, 1488–1491.

    Article  CAS  PubMed  Google Scholar 

  51. L. Ge, C. Han and J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Applied Catalysis B, 2011, 108–109, 100–107.

  52. Yan, S. C., Li, Z. S., & Zou, Z. G. (2009). Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 25, 10397–10401.

    Article  CAS  PubMed  Google Scholar 

  53. Dong, G., & Zhang, L. (2013). Synthesis and enhanced Cr(VI) photoreduction property of formate anion containing graphitic carbon nitride. Journal of Physical Chemistry C, 117, 4062–4068.

    Article  CAS  Google Scholar 

  54. C. Tan, G. Zhu, M. Hojamberdiev, K. Okada, J. Liang, X. Luo, P. Liu and Y. Liu, Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: efficient photodegradation of organic dyes under visible light, Applied Catalysis B, 2014, 152–153, 425–436.

Download references

Acknowledgements

This work was supported by the financial supports of National Natural Science Foundation of China (No. 51802082), Natural Science Foundation of Henan Province (212300410221), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 21HATIT016), Key Scientific and Technological Project of Henan Province (212102210473), Key Scientific Research Project of Henan Provincial Education Department (21A430030) and “Climbing” Project of Henan Institute of Science and Technology (No. 2018CG04).

Author information

Authors and Affiliations

Authors

Contributions

WS: Conceptualization, investigation, formal analysis, writing-review and editing, software. W-XF: Investigation, formal analysis, data curation. J-CW: Conceptualization, funding acquisition, formal analysis, writing-review and editing. XQ: Investigation, formal analysis. BW: Investigation, formal analysis. XG: Conceptualization, data curation, writing-review and editing.

Corresponding author

Correspondence to Ji-Chao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 621 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Fang, WX., Wang, JC. et al. pH-controlled mechanism of photocatalytic RhB degradation over g-C3N4 under sunlight irradiation. Photochem Photobiol Sci 20, 303–313 (2021). https://doi.org/10.1007/s43630-021-00019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00019-9

Keywords

Navigation