Skip to main content

Advertisement

Log in

Effect of photobiomodulation on mitochondrial dynamics in peripheral nervous system in streptozotocin-induced type 1 diabetes in rats

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

There is no effective treatment to halt peripheral nervous system damage in diabetic peripheral neuropathy. Mitochondria have been at the center of discussions as important factors in the development of neuropathy in diabetes. Photobiomodulation has been gaining clinical acceptance as it shows beneficial effects on a variety of nervous system disorders. In this study, the effects of photobiomodulation (904 nm, 45 mW, 6.23 J/cm2, 0.13 cm2, 60 ns pulsed time) on mitochondrial dynamics were evaluated in an adult male rat experimental model of streptozotocin-induced type 1 diabetes. Results presented here indicate that photobiomodulation could have an important role in preventing or reversing mitochondrial dynamics dysfunction in the course of peripheral nervous system damage in diabetic peripheral neuropathy. Photobiomodulation showed its effects on modulating the protein expression of mitofusin 2 and dynamin-related protein 1 in the sciatic nerve and in the dorsal root ganglia neurons of streptozotocin-induced type 1 diabetes in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTRL:

Control

DRP-1:

Dynamin-related protein 1

DRG:

Dorsal root ganglia

i.p:

Intraperitoneal

MFN-2:

Mitofusin-2

PBM:

Photobiomodulation

SN:

Sciatic nerve

STZ:

Streptozotocin

References

  1. Juster-Switlyk, K., & Smith, A. G. (2016). Updates in diabetic peripheral neuropathy. F1000Res 5.

  2. Kharroubi, A. T., & Darwish, H. M. (2015). Diabetes mellitus: the epidemic of the century. World Journal of Diabetes, 6(6), 850–867.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cho, N. H., et al. (2018). IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281.

    Article  CAS  PubMed  Google Scholar 

  4. Zaccardi, F., et al. (2016). Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgraduate Medical Journal, 92(1084), 63–69.

    Article  CAS  PubMed  Google Scholar 

  5. Ostenson, C. G. (2001). The pathophysiology of type 2 diabetes mellitus: an overview. Acta Physiologica Scandinavica, 171(3), 241–247.

    Article  CAS  PubMed  Google Scholar 

  6. Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137–188.

    Article  CAS  PubMed  Google Scholar 

  7. Selvarajah, D., et al. (2011). Central nervous system involvement in diabetic neuropathy. Current Diabetes Reports, 11(4), 310–322.

    Article  PubMed  Google Scholar 

  8. Yagihashi, S., Mizukami, H., & Sugimoto, K. (2011). Mechanism of diabetic neuropathy: where are we now and where to go? Journal of Diabetes Investigation, 2(1), 18–32.

    Article  CAS  PubMed  Google Scholar 

  9. Schreiber, A. K., et al. (2015). Diabetic neuropathic pain: physiopathology and treatment. World Journal of Diabetes, 6(3), 432–444.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tesfaye, S., Boulton, A. J., & Dickenson, A. H. (2013). Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care, 36(9), 2456–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iqbal, Z., et al. (2018). Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clinical Therapeutics, 40(6), 828–849.

    Article  PubMed  Google Scholar 

  12. Callaghan, B. C., et al. (2012). Diabetic neuropathy: clinical manifestations and current treatments. The Lancet. Neurology, 11(6), 521–534.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  14. Fernyhough, P., Huang, T. J., & Verkhratsky, A. (2003). Mechanism of mitochondrial dysfunction in diabetic sensory neuropathy. Journal of the Peripheral Nervous System, 8(4), 227–235.

    Article  PubMed  Google Scholar 

  15. Fernyhough, P., Roy Chowdhury, S. K., & Schmidt, R. E. (2010). Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Review of Endocrinology & Metabolism, 5(1), 39–49.

    Article  CAS  Google Scholar 

  16. Suarez-Rivero, J. M., et al. (2017). Mitochondrial dynamics in mitochondrial diseases. Diseases, 5(1), 1. https://doi.org/10.3390/diseases5010001

    Article  CAS  Google Scholar 

  17. Amchenkova, A. A., et al. (1988). Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. Journal of Cell Biology, 107(2), 481–495.

    Article  CAS  PubMed  Google Scholar 

  18. Frank, S., et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell, 1(4), 515–525.

    Article  CAS  PubMed  Google Scholar 

  19. Vantaggiato, C., et al. (2019). The fine tuning of Drp1-dependent mitochondrial remodeling and autophagy controls neuronal differentiation. Frontier Cell Neuroscience, 13, 120.

    Article  CAS  Google Scholar 

  20. Fonseca, T. B., et al. (2019). Mitochondrial fission requires DRP1 but not dynamins. Nature, 570(7761), E34–E42.

    Article  CAS  PubMed  Google Scholar 

  21. Chan, D. C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annual Review of Genetics, 46, 265–287.

    Article  CAS  PubMed  Google Scholar 

  22. Ni, H. M., Williams, J. A., & Ding, W. X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biology, 4, 6–13.

    Article  CAS  PubMed  Google Scholar 

  23. Filadi, R., Pendin, D., & Pizzo, P. (2018). Mitofusin 2: from functions to disease. Cell Death & Disease, 9(3), 330.

    Article  Google Scholar 

  24. Chen, K. H., et al. (2014). Role of mitofusin 2 (Mfn2) in controlling cellular proliferation. The FASEB Journal, 28(1), 382–394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mourier, A., et al. (2015). Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. Journal of Cell Biology, 208(4), 429–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, H., & Chan, D. C. (2009). Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Human Molecular Genetics, 18(R2), R169–R176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue, R., et al. (2018). Mitofusin2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Oxidative Medicine and Cellular Longevity, 2018, 2798070.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peng, C., et al. (2015). Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways. International Journal of Biochemistry & Cell Biology, 69, 29–40.

    Article  CAS  Google Scholar 

  29. Pawlikowska, P., Gajkowska, B., & Orzechowski, A. (2007). Mitofusin 2 (Mfn2): A key player in insulin-dependent myogenesis in vitro. Cell and Tissue Research, 327(3), 571–581.

    Article  CAS  PubMed  Google Scholar 

  30. Cerveny, K. L., et al. (2007). Regulation of mitochondrial fusion and division. Trends in Cell Biology, 17(11), 563–569.

    Article  CAS  PubMed  Google Scholar 

  31. Woo, D. H., et al. (2018). Activation of astrocytic μ-opioid receptor elicits fast glutamate release through TREK-1-containing K2P channel in hippocampal astrocytes. Frontiers in Cellular Neuroscience, 12, 319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pareyson, D., et al. (2013). Peripheral neuropathy in mitochondrial disorders. Lancet Neurology, 12(10), 1011–1024.

    Article  CAS  PubMed  Google Scholar 

  33. Chandrasekaran, K., et al. (2019). Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD(+)-dependent SIRT1-PGC-1alpha-TFAM pathway. International Review of Neurobiology, 145, 177–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dassanayaka, S., et al. (2015). High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation. The Biochemical Journal, 467(1), 115–126.

    Article  CAS  PubMed  Google Scholar 

  35. Sifuentes-Franco, S., et al. (2017). The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. Jorunal of Diabetes Research, 2017, 1673081.

    Google Scholar 

  36. Russell, J. W., & Zilliox, L. A. (2014). Diabetic neuropathies. Continuum (Minneap Minn), 20(5 Peripheral Nervous System Disorders), 1226–1240.

    Google Scholar 

  37. Callaghan, B. C., et al. (2012). Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Systematic Review, 6, CD007543.

    Google Scholar 

  38. Salehpour, F., & Hamblin, M. R. (2020). Photobiomodulation for Parkinson’s disease in animal models: A systematic review. Biomolecules, 10(4), 610.

    Article  CAS  PubMed Central  Google Scholar 

  39. Kingsley, J. D., Demchak, T., & Mathis, R. (2014). Low-level laser therapy as a treatment for chronic pain. Frontiers in Physiology, 5, 306.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alves, A. C., et al. (2013). Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Research & Therapy, 15(5), R116.

    Article  CAS  Google Scholar 

  41. Song, S., Zhou, F., & Chen, W. R. (2012). Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases. Journal of Neuroinflammation, 9, 219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kajagar, B. M., et al. (2012). Efficacy of low level laser therapy on wound healing in patients with chronic diabetic foot ulcers-a randomised control trial. Indian Journal of Surgery, 74(5), 359–363.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Song, H. J., et al. (2018). Effectiveness of high-intensity laser therapy in the treatment of musculoskeletal disorders: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore), 97(51), e13126.

    Article  Google Scholar 

  44. Salehpour, F., et al. (2017). Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiology of Aging, 58, 140–150.

    Article  CAS  PubMed  Google Scholar 

  45. de Freitas, L. F., & Hamblin, M. R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 7000417. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Souza, N. H., et al. (2014). Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages. Brazilian Journal of Physical Therapy, 18(4), 308–314.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chung, H., et al. (2012). The nuts and bolts of low-level laser (light) therapy. Annals of Biomedical Engineering, 40(2), 516–533.

    Article  PubMed  Google Scholar 

  48. Hamblin, M. R. (2016). Shining light on the head: photobiomodulation for brain disorders. BBA Clinical, 6, 113–124.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Martins, D. O., et al. (2017). Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers in Medical Science, 32(4), 833–840.

    Article  PubMed  Google Scholar 

  50. Oliveira, M. E., et al. (2017). Low level laser therapy alters satellite glial cell expression and reverses nociceptive behavior in rats with neuropathic pain. Photochemical & Photobiological Sciences, 16(4), 547–554.

    Article  CAS  Google Scholar 

  51. Rocha, I. R., et al. (2017). Photobiostimulation reverses allodynia and peripheral nerve damage in streptozotocin-induced type 1 diabetes. Lasers in Medical Science, 32(3), 495–501.

    Article  PubMed  Google Scholar 

  52. Wang, R., et al. (2019). Photobiomodulation for global cerebral ischemia: targeting mitochondrial dynamics and functions. Molecular Neurobiology, 56(3), 1852–1869.

    Article  CAS  PubMed  Google Scholar 

  53. Tatmatsu-Rocha, J. C., et al. (2018). Mitochondrial dynamics (fission and fusion) and collagen production in a rat model of diabetic wound healing treated by photobiomodulation: Comparison of 904 nm laser and 850nm light-emitting diode (LED). Journal of Photochemistry and Photobiology B: Biology, 187, 41–47.

    Article  CAS  Google Scholar 

  54. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  55. Miller, A. J., Roman, B., & Norstrom, E. M. (2016). Protein electrophoretic migration data from custom and commercial gradient gels. Data Brief, 9, 1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu, J., & Yan, L. J. (2015). Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 8, 181–188.

    Google Scholar 

  57. Eleazu, C. O., et al. (2013). Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes Metabolic Disorders, 12(1), 60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. American Diabetes, A. (2009). Diagnosis and classification of diabetes mellitus. Diabetes Care, 32(Suppl 1), S62–S67.

    Article  Google Scholar 

  59. Davidson, E., et al. (2009). The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Experimental Diabetes Research, 2009, 431980.

    Article  PubMed  Google Scholar 

  60. Campos, C. (2012). Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgraduate Medicine, 124(6), 90–97.

    Article  PubMed  Google Scholar 

  61. Schmeichel, A. M., Schmelzer, J. D., & Low, P. A. (2003). Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes, 52(1), 165–171.

    Article  CAS  PubMed  Google Scholar 

  62. Vincent, A. M., et al. (2010). Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathologica, 120(4), 477–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumari, S., et al. (2012). Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Translational Stroke Research, 3(2), 296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Farivar, S., Malekshahabi, T., & Shiari, R. (2014). Biological effects of low level laser therapy. Journal of Lasers in Medical Sciences, 5(2), 58–62.

    PubMed  PubMed Central  Google Scholar 

  65. de la Torre, J. C. (2017). Treating cognitive impairment with transcranial low level laser therapy. Journal of Photochemistry and Photobiology B: Biology, 168, 149–155.

    Article  CAS  Google Scholar 

  66. Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, Y., et al. (2017). Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiology of Aging, 49, 165–182.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this work was generously provided by Sao Paulo Research Foundation—FAPESP (grant number 2017/25,554–0; 2017/05,218–5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marucia Chacur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures of the study were conducted in accordance with the ethical guidelines set by Institutional Animal Care Committee of the University of Sao Paulo. Protocol number 123/2015. The funding agency plays no role in the design of the study, data collection, analysis, interpretation of the data, or in writing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, I.R.C., Perez-Reyes, E. & Chacur, M. Effect of photobiomodulation on mitochondrial dynamics in peripheral nervous system in streptozotocin-induced type 1 diabetes in rats. Photochem Photobiol Sci 20, 293–301 (2021). https://doi.org/10.1007/s43630-021-00018-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00018-w

Keywords

Navigation