Skip to main content
Log in

Exploiting the photoactivity of bacterial reaction center to investigate liposome dynamics

  • Technical Notes
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Charge recombination kinetics of bacterial photosynthetic protein Reaction Center displays an exquisite sensitivity to the actual occupancy of ubiquinone-10 in its QB-binding site. Here, we have exploited such phenomenon for assessing the growth and the aggregation/fusion of phosphocholine vesicles embedding RC in their membrane, when treated with sodium oleate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. Aggregation and fusion can happen because of the propensity of oleic acid molecules, formed by OL protonation, to self-assemble as non-lamellar inverted hexagonal structures, which can be fusogenic. At even lower pH, oleic acid separates as oil droplets [30].

  2. In principle, in addition to fusion and aggregation, RC and/or Q could be shuttled between different vesicles by hydrophobic oleic acid/oleate-based carriers.

References

  1. Luisi, P. L., Ferri, F., & Stano, P. (2006). Approaches to semi-synthetic minimal cells: A review. Naturwissenschaften, 93, 1–3.

    Article  CAS  Google Scholar 

  2. Shin, J., & Noireaux, V. (2012). An E.coli cell-free expression toolbox: Application to synthetic gene circuits and artificial cells. ACS Synthetic Biology, 1, 29–41.

    Article  CAS  Google Scholar 

  3. Salehi-Reyhani, A., Ces, O., & Elani, Y. (2017). Artificial cell mimics as simplified models for the study of cell biology. Experimental Biology and Medicine., 242, 1309–1317.

    Article  CAS  Google Scholar 

  4. Schwille, P., Spatz, J., Landfester, K., Bodenschatz, E., Herminghaus, S., Sourjik, V., et al. (2018). Sundmacher MaxSynBio: avenues towards creating cells from the bottom up. Angewandte Chemie International Edition., 57, 13382–13392.

    Article  CAS  Google Scholar 

  5. Budin, I., & Szostak, J. W. (2010). Expanding roles for diverse physical phenomena during the origin of life. Annual Review of Biophysics, 39, 245–263.

    Article  CAS  Google Scholar 

  6. Hardy, M. D., Yang, J., Selimkhanov, J., Cole, C. M., Tsimring, L. S., & Devaraj, N. K. (2015). Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proceedings of the National Academy of Sciences, 112, 8187–8192.

    Article  CAS  Google Scholar 

  7. Walde, P., Wick, R., Fresta, M., Mangone, A., & Luisi, P. L. (1994). Autopoietic self-reproduction of fatty acid vesicles. Journal of the American Chemical Society., 116, 11649–11654.

    Article  CAS  Google Scholar 

  8. Budin, I., & Szostak, J. W. (2011). Physical effects underlying the transition from primitive to modern cell membranes. Proceedings of the National Academy of Sciences, 108, 5249–5254.

    Article  CAS  Google Scholar 

  9. Miele, Y., Medveczky, Z., Holló, G., Tegze, B., Derényi, I., Hórvölgyi, Z., et al. (2020). Self-division of giant vesicles driven by an internal enzymatic reaction. Chemical Science, 11, 3228–3235.

    Article  CAS  Google Scholar 

  10. Milano, F., Agostiano, A., Mavelli, F., & Trotta, M. (2003). Kinetics of the quinone binding reaction at the QB site of reaction centers from the purple bacteria Rhodobactersphaeroides reconstituted in liposomes. European Journal OF Biochemistry, 270, 4595–4605.

    Article  CAS  Google Scholar 

  11. Tangorra, R. R., Operamolla, A., Milano, F., Omar, O. H., Henrard, J., Comparelli, R., et al. (2015). Assembly of a photosynthetic reaction center with ABA tri-block polymersomes: Highlights on protein localization. Photochemical & Photobiological Sciences, 14, 1844–1852.

    Article  CAS  Google Scholar 

  12. Altamura, E., Milano, F., Tangorra, R. R., Trotta, M., Omar, O. H., Stano, P., & Mavelli, F. (2017). Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells. Proceedings of the National Academy of Sciences United State of America, 114, 3837–3842.

    Article  CAS  Google Scholar 

  13. Mavelli, F., Trotta, M., Ciriaco, F., Agostiano, A., Giotta, L., Italiano, F., et al. (2014). The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. European Biophysics Journal, 43, 301–315.

    Article  CAS  Google Scholar 

  14. Trotta, M., Agostiano, A., Milano, F., & Nagy, L. (2002). Response of membrane protein to the environment: the case of photosynthetic Reaction Centre. Materials science & engineering C, 22, 263–267.

    Article  Google Scholar 

  15. Kundu, N., Mondal, D., & Sarkar, N. (2020). Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: Unveiling the role of fatty acids as a model protocell membrane. Biophysical Reviews, 12, 1117–1131.

    Article  CAS  Google Scholar 

  16. Isaacson, R. A., Lendzian, F., Abresch, E. C., Lubitz, W., & Feher, G. (1995). Electronic structure of QA in reaction centers from Rhodobactersphaeroides. I. Electron paramagnetic resonance in single crystals. Biophysical Journal, 69, 311–322.

    Article  CAS  Google Scholar 

  17. Okamura, M. Y., Isaacson, R. A., & Feher, G. (1975). Primary acceptor in bacterial photosynthesis: Obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonasspheroides. Proceedings of the National Academy of Sciences, 72, 3491–3495.

    Article  CAS  Google Scholar 

  18. Milano, F., Italiano, F., Agostiano, A., & Trotta, M. (2009). Characterisation of RC-proteoliposomes at different RC/lipid ratios. Photosynthesis Research, 100, 107–112.

    Article  CAS  Google Scholar 

  19. Milano, F., Tangorra, R. A., Hassan Omar, O., Ragni, R., Operamolla, A., Agostiano, A., Farinola, G. M. & Trotta, M. (2012). Angewandte Chemie International Edition English, vol. 51, pp. 11019–11023.

  20. Shinkarev, V. P., & Wraight, C. A. (1997). The interaction of quinone and detergent with reaction centers of purple bacteria. I. Slow quinone exchange between reaction center micelles and pure detergent micelles. Biophysical Journal, 72, 2304–2319.

    Article  CAS  Google Scholar 

  21. Altamura, E., Albanese, P., Stano, P., Trotta, M., Milano, F., & Mavelli, F. (2020). Charge recombination kinetics of bacterial photosynthetic reaction centres reconstituted in liposomes: Deterministic versus stochastic approach. Data, 5, 53.

    Article  Google Scholar 

  22. Blöchliger, E., Blocher, M., Walde, P., & Luisi, P. L. (1998). Matrix effect in the size distribution of fatty acid vesicles. The Journal of Physical Chemistry B., 102, 10383–10390.

    Article  Google Scholar 

  23. Chen, I. A., & Szostak, J. W. (2004). A kinetic study of the growth of fatty acid vesicles. Biophysical Journal, 87, 988–998.

    Article  CAS  Google Scholar 

  24. Gebicki, J. M., & Hicks, M. (1973). Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature, 243, 232–234.

    Article  CAS  Google Scholar 

  25. Hargreaves, W. R., & Deamer, D. W. (1978). Liposomes from ionic, single-chain amphiphiles. Biochemistry, 17, 3759–3768.

    Article  CAS  Google Scholar 

  26. Morigaki, K., & Walde, P. (2007). Fatty acid vesicles. Current Opinion in Colloid & Interface Science, 12, 75–80.

    Article  CAS  Google Scholar 

  27. Storch, J., & Kleinfeld, A. M. (1986). Transfer of long-chain fluorescent free fatty acids between unilamellar vesicles. Biochemistry, 25, 1717–1726.

    Article  CAS  Google Scholar 

  28. Simard, J. R., Kamp, F., & Hamilton, J. A. (2008). Measuring the adsorption of fatty acids to phospholipid vesicles by multiple fluorescence probes. Biophysical Journal, 94, 4493–4503.

    Article  CAS  Google Scholar 

  29. Thomas, R. M., Baici, A., Werder, M., Schulthess, G., & Hauser, H. (2002). Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems. Biochemistry, 41, 1591–1601.

    Article  CAS  Google Scholar 

  30. Edwards, K., Silvander, M., & Karlsson, G. (1995). Aggregate structure in dilute aqueous dispersions of oleic acid/sodium oleate and oleic acid/sodium oleate/egg phosphatidylcholine. Langmuir, 11, 2429–2434.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Massimo Trotta (Institute for Physical and Chemical Processes, CNR-Bari, Italy) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Mavelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest relevant to the manuscript submitted to Photochemical and Photobiological Sciences.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2021_11_MOESM1_ESM.docx

Electronic Supplementary Information (ESI) available: RC charge recombinationmechanism; liposome preparation and composition; S value calculation; kineticspectrometer description. See DOI: https://doi.org/10.1039/x0xx00000x (DOCX 178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altamura, E., Milano, F., Stano, P. et al. Exploiting the photoactivity of bacterial reaction center to investigate liposome dynamics. Photochem Photobiol Sci 20, 321–326 (2021). https://doi.org/10.1007/s43630-021-00011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00011-3

Navigation