Skip to main content

Advertisement

Log in

Highly-Cited Papers on Fracture Non-union – A Bibliometric Analysis of the Global Literature (1990–2023)

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Objective

The growing interest in this field of fracture nonunion has been informally acknowledged through published studies. A bibliometric analysis was conducted to objectively outline the patterns in published clinical research concerning nonunion fractures by utilizing highly cited papers (HCPs).

Methods

Through a predetermined search strategy, we gathered literature on the clinical management of nonunion fractures from the Scopus database and utilized bibliometrics to examine the publication dates, countries, institutions, journals, authors, HCPs, and research focal points. Statistical analysis and visualization were conducted using MS Excel and VOSviewer software.

Results

From 1990 to 2023, a total of 168 HCPs in the field of fracture nonunion were identified. They received an average of 167.68 citations per paper (CPP). Among them, 4.08% received external funding, while 17.26% were involved in international collaboration. The United States (49.4% share) was the most productive country and France had the highest citation impact. P.V. Gianoudis had the highest productivity with 13 publications and P. Hernigou had the highest citation impact. The Mayo Clinic was the most productive organization and Hopital Henri Mondor achieved the highest citation impact. The most productive journal was Clinical Orthopedics & Related Research, and the Journal of Bone & Joint Surgery, American Volume had the highest average citation impact.

Conclusion

This contemporary bibliometric study illustrates the research features and developments of nonunion fractures. Through the use of VOSviewer, key countries, organizations, and authors could be identified, providing researchers with essential information to pinpoint current and future areas of interest in fracture nonunion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data for this paper is available in the public domain.

References

  1. Cunningham, B. P., Brazina, S., Morshed, S., & Miclau, T. (2017). Fracture healing: A review of clinical, imaging and laboratory diagnostic options. Injury, 48(Suppl 1), S69–S75.

    Article  PubMed  Google Scholar 

  2. Calori, G. M., Albisetti, W., Agus, A., Iori, S., & Tagliabue, L. (2007). Risk factors contributing to fracture nonunions. Injury, 38(Suppl 2), S11–S18.

    Article  PubMed  Google Scholar 

  3. Fong, K., Truong, V., Foote, C. J., Petrisor, B., Williams, D., Ristevski, B., Sprague, S., & Bhandari, M. (2013). Predictors of nonunion and reoperation in patients with fractures of the tibia: An observational study. BMC Musculoskeletal Disorders, 14, 103.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brinker, M. R., O’Connor, D. P., Monla, Y. T., & Earthman, T. P. (2007). Metabolic and endocrine abnormalities in patients with nonunions. Journal of Orthopaedic Trauma, 21(8), 557–570.

    Article  PubMed  Google Scholar 

  5. JD Thomas JL Kehoe 2024 Bone Nonunion. [Updated 2023 Mar 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554385/

  6. Bell, A., Templeman, D., & Weinlein, J. C. (2016). Nonunion of the femur and tibia: An update. Orthopedic Clinics of North America, 47(2), 365–375.

    Article  PubMed  Google Scholar 

  7. Hak, D. J., Fitzpatrick, D., Bishop, J. A., Marsh, J. L., Tilp, S., Schnettler, R., Simpson, H., & Alt, V. (2014). Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury, 45(Suppl 2), S3-7.

    Article  PubMed  Google Scholar 

  8. Rupp, M., Biehl, C., Budak, M., Thormann, U., Heiss, C., & Alt, V. (2018). Diaphyseal long bone nonunions – types, aetiology, economics, and treatment recommendations. International Orthopaedics, 42(2), 247–258.

    Article  PubMed  Google Scholar 

  9. Dailey, H. L., Wu, K. A., Wu, P. S., McQueen, M. M., & Court-Brown, C. M. (2018). Tibial fracture nonunion and time to healing after reamed intramedullary nailing: Risk factors based on a single-center review of 1003 patients. Journal of Orthopaedic Trauma, 32(7), e263–e269.

    Article  PubMed  Google Scholar 

  10. Stewart, S. K. (2019). Fracture nonunion: A review of clinical challenges and future research needs. Malays Orthop J., 13(2), 1–10. https://doi.org/10.5704/MOJ.1907.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giannoudis, P. V., Chloros, G. D., & Ho, Y. S. (2021). A historical review and bibliometric analysis of research on fracture nonunion in the last three decades. International Orthopaedics, 45(7), 1663–1676. https://doi.org/10.1007/s00264-021-05020-6

    Article  PubMed  Google Scholar 

  12. Lucio-Arias, D., & Leydesdorff, L. (2009). An indicator of research front activity: Measuring intellectual organization as uncertainty reduction in document sets. Journal of the American Society for Information Science and Technology, 60(12), 2488–2498. https://doi.org/10.1002/asi.21199

    Article  Google Scholar 

  13. R Vaishya BM Gupta M Kappi A Vaish 2023 Fracture research from India between 1989 to 2022: A scientometric study . Iberoamerican Journal of Science Measurement and Communication [Internet]. 8 [cited 2024 Apr. 2];3(1). Available from: https://ijsmc.pro-metrics.org/index.php/i/article/view/35

  14. Vaishya, R., Gupta, B. M., Kappi, M. K., & Vaish, A. (2023). A scientometric analysis of the most highlycited publications on fracture research from india: 1989–2022. Ann Natl Acad Med Sci (India), 59, 209–218.

    Article  Google Scholar 

  15. Walter, N., Orbenes, N., Rupp, M., & Alt, V. (2022). The state of research in fracture-related infection—a bibliometric analysis. Medicina, 58(9), 1170. https://doi.org/10.3390/medicina58091170

    Article  PubMed  PubMed Central  Google Scholar 

  16. Elshohna, M., & Tsouklidis, N. (2022). Top 50 cited bone graft orthopedic papers. Cureus, 14(3), e23419. https://doi.org/10.7759/cureus.23419

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, J., Zhao, Y., et al. (2023). Research hotspots and trends of bone xenograft in clinical procedures: A bibliometric and visual analysis of the past decade. Bioengineering, 10(8), 929. https://doi.org/10.3390/bioengineering10080929

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lin, H., Wang, X., Huang, M., et al. (2020). Research hotspots and trends of bone defects based on web of science: A bibliometric analysis. Journal of Orthopaedic Surgery and Research, 15, 463. https://doi.org/10.1186/s13018-020-01973-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang, X., Liu, X., Shang, Y., Qiao, F., & Chen, G. (2020). Current trends in research on bone regeneration: A bibliometric analysis. BioMed Research International, 2020, 8787394. https://doi.org/10.1155/2020/8787394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, X., Li, Q., Wang, Z., et al. (2022). Bone regeneration materials and their application over 20 years: A bibliometric study and systematic review. Front Bioeng Biotechnol., 10, 921092. https://doi.org/10.3389/fbioe.2022.921092

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng, Z., Luo, F., Lin, Y., et al. (2022). Research trends of mesenchymal stem cells application in orthopedics: A bibliometric analysis of the past 2 decades. Frontiers in Public Health, 10, 1021818. https://doi.org/10.3389/fpubh.2022.1021818

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jindal, R., Dhillon, M., Mittal, N., Aggarwal, A., Malhotra, A., & Garg, S. K. (2021). Gaps in the care of open fractures: An indian scenario. Indian J Orthop., 56(2), 280–288. https://doi.org/10.1007/s43465-021-00476-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tissingh, E. K., Marais, L., Loro, A., Bose, D., Paner, N. T., Ferguson, J., Morgensten, M., & McNally, M. (2022). Management of fracture-related infection in low resource settings: How applicable are the current consensus guidelines? EFORT Open Rev., 7(6), 422–432. https://doi.org/10.1530/EOR-22-0031

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vaishya, R., Gupta, B. M., Misra, A., Mamdapur, G. M. N., Walke, R., & Vaish, A. (2023). Top 100 highly cited papers from India on COVID-19 research: A bibliometric analysis of the core literature. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 17(11), 102898. https://doi.org/10.1016/j.dsx.2023.102898

    Article  CAS  Google Scholar 

  25. Vaishya, R., Gupta, B. M., Mamdapur, G. M. N., Vaish, A., & Migliorini, F. (2023). Scientometric analysis of highly cited papers on avascular necrosis of the femoral head from 1991 to 2022. Journal of Orthopaedics and Traumatology, 24(1), 27. https://doi.org/10.1186/s10195-023-00709-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vaishya, R., Gupta, B. M., Misra, A., Mamdapurj, G. M., & Vaish, A. (2022). Global research in sarcopenia: High-cited papers, research institutions, funding agencies and collaborations, 1993–2022. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 16(11), 102654. https://doi.org/10.1016/j.dsx.2022.102654

    Article  CAS  Google Scholar 

  27. Yang, J., Zhang, X., Liang, W., Chen, G., Ma, Y., Zhou, Y., Fen, R., & Jiang, K. (2022). Efficacy of adjuvant treatment for fracture nonunion/delayed union: A network meta-analysis of randomized controlled trials. BMC Musculoskeletal Disorders, 23(1), 481. https://doi.org/10.1186/s12891-022-05407-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding, Z. C., Lin, Y. K., Gan, Y. K., & Tang, T. T. (2018). Molecular pathogenesis of fracture nonunion. J Orthop Translat., 14, 45–56. https://doi.org/10.1016/j.jot.2018.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dimitriou, R., Carr, I. M., West, R. M., Markham, A. F., & Giannoudis, P. V. (2011). Genetic predisposition to fracture nonunion: A case-control study of a preliminary single nucleotide polymorphisms analysis of the BMP pathway. BMC Musculoskeletal Disorders, 12, 44. https://doi.org/10.1186/1471-2474-12-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schlickewei, C. W., Kleinertz, H., Thiesen, D. M., Mader, K., Priemel, M., Frosch, K. H., & Keller, J. (2019). Current and future concepts for the treatment of impaired fracture healing. International Journal of Molecular Sciences, 20(22), 5805. https://doi.org/10.3390/ijms20225805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Szwed-Georgiou, A., Płociński, P., Kupikowska-Stobba, B., Urbaniak, M. M., Rusek-Wala, P., Szustakiewicz, K., et al. (2023). Bioactive materials for bone regeneration: Biomolecules and delivery systems. ACS Biomaterials Science & Engineering, 9(9), 5222–5254. https://doi.org/10.1021/acsbiomaterials.3c00609

    Article  CAS  Google Scholar 

  32. Zhu, L., Liu, Y., Wang, A., Zhu, Z., Li, Y., Zhu, C., et al. (2022). Application of BMP in Bone Tissue Engineering. Front. Bioeng. Biotechnol., 10, 810880. https://doi.org/10.3389/fbioe.2022.810880

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma, Q., Miri, Z., Haugen, H. J., Moghanian, A., & Loca, D. (2023). Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng., 14, 20417314231172572. https://doi.org/10.1177/20417314231172573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghiasi, M. S., Chen, J., Vaziri, A., Rodriguez, E. K., & Nazarian, A. (2017). Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep., 6, 87–100. https://doi.org/10.1016/j.bonr.2017.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marmor, M. T., Grimm, B., Hanflik, A. M., Richter, P. H., Sivananthan, S., Yarboro, S. R., & Braun, B. J. (2022). Use of wearable technology to measure activity in orthopaedic trauma patients: A systematic review. Indian J Orthop., 56(7), 1112–1122. https://doi.org/10.1007/s43465-022-00629-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8459–8486. https://doi.org/10.1007/s12652-021-03612-z

    Article  PubMed  Google Scholar 

  37. Griffin, X. L., Parsons, N., Costa, M. L., & Metcalfe, D. (2014). Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Systematic Review, 2014(6), CD008579. https://doi.org/10.1002/14651858.CD008579.

    Article  Google Scholar 

  38. Sansone, V., Ravier, D., Pascale, V., Applefield, R., Del Fabbro, M., & Martinelli, N. (2022). Extracorporeal shockwave therapy in the treatment of nonunion in long bones: A systematic review and meta-analysis. Journal of Clinical Medicine, 11(7), 1977. https://doi.org/10.3390/jcm11071977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding in any form was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

RV: Conceptualization, Literature Search and Analysis, Manuscript writing, editing and final approval. BMG: Conceptualization, Data Curation and Analysis, Literature Search, Manuscript writing, editing and final approval. GMNM: Data Curation and Analysis, Literature Search, Manuscript writing, editing and final approval. AV: Literature Search and Analysis, Manuscript writing, editing and final approval. JSB: Literature Search and Analysis, Manuscript writing, editing and final approval. JM: Literature Search and Analysis, Manuscript writing, editing and final approval.

Corresponding author

Correspondence to Raju Vaishya.

Ethics declarations

Conflict of Interest

All the authors declare no conflict of interest.

Ethical Approval

The paper is a review article so no ethical approval is required.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 418 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaishya, R., Gupta, B.M., Mamdapur, G.M.N. et al. Highly-Cited Papers on Fracture Non-union – A Bibliometric Analysis of the Global Literature (1990–2023). JOIO (2024). https://doi.org/10.1007/s43465-024-01176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43465-024-01176-6

Keywords

Navigation