Skip to main content
Log in

Diagnostic Accuracy of Artificial Intelligence-Based Algorithms in Automated Detection of Neck of Femur Fracture on a Plain Radiograph: A Systematic Review and Meta-analysis

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the diagnostic accuracy of artificial intelligence-based algorithms in identifying neck of femur fracture on a plain radiograph.

Design

Systematic review and meta-analysis.

Data sources

PubMed, Web of science, Scopus, IEEE, and the Science direct databases were searched from inception to 30 July 2023.

Eligibility criteria for study selection

Eligible article types were descriptive, analytical, or trial studies published in the English language providing data on the utility of artificial intelligence (AI) based algorithms in the detection of the neck of the femur (NOF) fracture on plain X-ray.

Main outcome measures

The prespecified primary outcome was to calculate the sensitivity, specificity, accuracy, Youden index, and positive and negative likelihood ratios. Two teams of reviewers (each consisting of two members) extracted the data from available information in each study. The risk of bias was assessed using a mix of the CLAIM (the Checklist for AI in Medical Imaging) and QUADAS-2 (A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies) criteria.

Results

Of the 437 articles retrieved, five were eligible for inclusion, and the pooled sensitivity of AIs in diagnosing the fracture NOF was 85%, with a specificity of 87%. For all studies, the pooled Youden index (YI) was 0.73. The average positive likelihood ratio (PLR) was 19.88, whereas the negative likelihood ratio (NLR) was 0.17. The random effects model showed an overall odds of 1.16 (0.84–1.61) in the forest plot, comparing the AI system with those of human diagnosis. The overall heterogeneity of the studies was marginal (I2 = 51%). The CLAIM criteria for risk of bias assessment had an overall >70% score.

Conclusion

Artificial intelligence (AI)-based algorithms can be used as a diagnostic adjunct, benefiting clinicians by taking less time and effort in neck of the femur (NOF) fracture diagnosis.

Study registration

PROSPERO CRD42022375449.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Augat, P., Bliven, E., & Hackl, S. (2019). Biomechanics of femoral neck fractures and implications for fixation. Journal of Orthopaedic Trauma, 33(Suppl 1), S27–S32. https://doi.org/10.1097/BOT.0000000000001365

    Article  PubMed  Google Scholar 

  2. Gullberg, B., Johnell, O., & Kanis, J. A. (1997). World-wide projections for hip fracture. Osteoporosis International, 7(5), 407–413. https://doi.org/10.1007/pl00004148

    Article  CAS  PubMed  Google Scholar 

  3. Pinto, A., Berritto, D., Russo, A., Riccitiello, F., Caruso, M., Belfiore, M. P., Papapietro, V. R., Carotti, M., Pinto, F., Giovagnoni, A., & Romano, L. (2018). Traumatic fractures in adults: missed diagnosis on plain radiographs in the emergency department. Acta Biomed., 89(1-S), 111–123. https://doi.org/10.23750/abm.v89i1-S.7015

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guly, H. R. (2001). Diagnostic errors in an accident and emergency department. Emergency Medicine Journal, 18(4), 263–269. https://doi.org/10.1136/emj.18.4.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miele, V., Galluzzo, M., & Trinci, M. (2012). Missed fractures in the emergency department. InErrors in radiology (pp. 39–50). Milano: Springer. https://doi.org/10.1007/978-88-470-2339-0_5l

    Book  Google Scholar 

  6. Brady, A. P. (2017). Error and discrepancy in radiology: inevitable or avoidable? Insights Imaging., 8(1), 171–182. https://doi.org/10.1007/s13244-016-0534-1

    Article  PubMed  Google Scholar 

  7. Waite, S., Scott, J., Gale, B., Fuchs, T., Kolla, S., & Reede, D. (2017). Interpretive error in radiology. AJR. American Journal of Roentgenology, 208(4), 739–749. https://doi.org/10.2214/AJR.16.16963

    Article  PubMed  Google Scholar 

  8. Degnan, A. J., Ghobadi, E. H., Hardy, P., Krupinski, E., Scali, E. P., Stratchko, L., Ulano, A., Walker, E., Wasnik, A. P., & Auffermann, W. F. (2019). Perceptual and interpretive error in diagnostic radiology-causes and potential solutions. Academic Radiology, 26(6), 833–845. https://doi.org/10.1016/j.acra.2018.11.006

    Article  PubMed  Google Scholar 

  9. Tang, X. (2019). The role of artificial intelligence in medical imaging research. BJR Open., 2(1), 20190031. https://doi.org/10.1259/bjro.20190031

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aggarwal, R., Sounderajah, V., Martin, G., Ting, D. S., Karthikesalingam, A., King, D., Ashrafian, H., & Darzi, A. (2021). Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digital Medicine., 4(1), 1–23. https://doi.org/10.1038/s41746-021-00438-z

    Article  Google Scholar 

  11. Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental, 2, 35. https://doi.org/10.1186/s41747-018-0061-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Puttagunta, M., & Ravi, S. (2021). Medical image analysis based on deep learning approach. Multimed Tools Appl., 80(16), 24365–24398. https://doi.org/10.1007/s11042-021-10707-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fourcade, A., & Khonsari, R. H. (2019). Deep learning in medical image analysis: A third eye for doctors. J Stomatol Oral Maxillofac Surg., 120(4), 279–288. https://doi.org/10.1016/j.jormas.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  14. Kuo, R. Y. L., Harrison, C., Curran, T. A., Jones, B., Freethy, A., Cussons, D., Stewart, M., Collins, G. S., & Furniss, D. (2022). Artificial intelligence in fracture detection: A systematic review and meta-analysis. Radiology., 304(1), 50–62. https://doi.org/10.1148/radiol.211785

    Article  PubMed  Google Scholar 

  15. Groot, O. Q., Bongers, M. E. R., Ogink, P. T., Senders, J. T., Karhade, A. V., Bramer, J. A. M., Verlaan, J. J., & Schwab, J. H. (2020). Does artificial intelligence outperform natural intelligence in interpreting musculoskeletal radiological studies? A systematic review. Clinical Orthopaedics and Related Research, 478(12), 2751–2764. https://doi.org/10.1097/CORR.0000000000001360

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X., Yang, Y., Shen, Y. W., Zhang, K. R., Jiang, Z. K., Ma, L. T., Ding, C., Wang, B. Y., Meng, Y., & Liu, H. (2022). Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: A systematic literature review and meta-analysis. European Radiology, 32(10), 7196–7216. https://doi.org/10.1007/s00330-022-08956-4

    Article  PubMed  Google Scholar 

  17. Langerhuizen, D. W. G., Janssen, S. J., Mallee, W. H., van den Bekerom, M. P. J., Ring, D., Kerkhoffs, G. M. M. J., Jaarsma, R. L., & Doornberg, J. N. (2019). What are the applications and limitations of artificial intelligence for fracture detection and classification in orthopaedic trauma imaging? A systematic review. Clinical Orthopaedics and Related Research, 477(11), 2482–2491. https://doi.org/10.1097/CORR.0000000000000848

    Article  PubMed  PubMed Central  Google Scholar 

  18. Olczak, J., Fahlberg, N., Maki, A., Razavian, A. S., Jilert, A., Stark, A., Sköldenberg, O., & Gordon, M. (2017). Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop., 88(6), 581–586. https://doi.org/10.1080/17453674.2017.1344459

    Article  PubMed  PubMed Central  Google Scholar 

  19. Adams, M., Chen, W., Holcdorf, D., McCusker, M. W., Howe, P. D., & Gaillard, F. (2019). Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures. Journal of medical imaging and radiation oncology., 63(1), 27–32. https://doi.org/10.1111/1754-9485.12828

    Article  PubMed  Google Scholar 

  20. Mu, L., Qu, T., Dong, D., Li, X., Pei, Y., Wang, Y., Shi, G., Li, Y., He, F., & Zhang, H. (2021). Fine-tuned deep convolutional networks for the detection of femoral neck fractures on pelvic radiographs: A multicenter dataset validation. IEEE Access., 24(9), 78495–78503. https://doi.org/10.1109/ACCESS.2021.3082952

    Article  Google Scholar 

  21. Beyaz, S., Açıcı, K., & Sümer, E. (2020). Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches. Jt Dis Relat Surg., 31(2), 175–183. https://doi.org/10.5606/ehc.2020.72163

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mutasa, S., Varada, S., Goel, A., Wong, T. T., & Rasiej, M. J. (2020). Advanced deep learning techniques applied to automated femoral neck fracture detection and classification. Journal of Digital Imaging, 33(5), 1209–1217. https://doi.org/10.1007/s10278-020-00364-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bae, J., Yu, S., Oh, J., Kim, T. H., Chung, J. H., Byun, H., Yoon, M. S., Ahn, C., & Lee, D. K. (2021). External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray. J Digit Imaging., 34(5), 1099–1109. https://doi.org/10.1007/s10278-021-00499-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. QUADAS-C tool | Cochrane Methods [Internet]. [cited 2023 Jan 1]. Available from: https://methods.cochrane.org/methods-cochrane/quadas-c-tool

  25. Mongan, J., Moy, L., & Kahn, C. E., Jr. (2020). Checklist for artificial intelligence in medical imaging (CLAIM): A guide for authors and reviewers. Radiol Artif Intell., 2(2), e200029. https://doi.org/10.1148/ryai.2020200029

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, W., HolcDorf, D., McCusker, M. W., Gaillard, F., & Howe, P. D. L. (2017). Perceptual training to improve hip fracture identification in conventional radiographs. PLoS ONE, 12(12), e0189192. https://doi.org/10.1371/journal.pone.0189192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cha, Y., Kim, J. T., Park, C. H., Kim, J. W., Lee, S. Y., & Yoo, J. I. (2022). Artificial intelligence and machine learning on diagnosis and classification of hip fracture: Systematic review. Journal of Orthopaedic Surgery and Research, 17(1), 520. https://doi.org/10.1186/s13018-022-03408-7

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shelmerdine, S. C., White, R. D., Liu, H., Arthurs, O. J., & Sebire, N. J. (2022). Artificial intelligence for radiological paediatric fracture assessment: A systematic review. Insights Into Imaging, 13(1), 94. https://doi.org/10.1186/s13244-022-01234-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang, S., Yin, B., Cao, W., Feng, C., Fan, G., & He, S. (2020). Diagnostic accuracy of deep learning in orthopaedic fractures: A systematic review and meta-analysis. Clinical Radiology, 75(9), 713.e17-713.e28. https://doi.org/10.1016/j.crad.2020.05.021

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Raj.

Ethics declarations

Conflict of Interest

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/disclosure-of-interest/ and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical Approval

Not required.

Informed Consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 76 KB)

Supplementary file2 (PDF 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, M., Ayub, A., Pal, A.K. et al. Diagnostic Accuracy of Artificial Intelligence-Based Algorithms in Automated Detection of Neck of Femur Fracture on a Plain Radiograph: A Systematic Review and Meta-analysis. JOIO 58, 457–469 (2024). https://doi.org/10.1007/s43465-024-01130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-024-01130-6

Keywords

Navigation