Skip to main content

Advertisement

Log in

Biologics: Teriparatide and Newer Anabolics

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

The landscape of osteoporosis management has evolved significantly over the years, witnessing a paradigm shift from conventional therapies to the emergence of biologic agents. This chapter delves into the intricate mechanisms, potential applications, and future directions of biologic interventions in osteoporosis care. Biologic agents, with their targeted approach to bone health, have revolutionized the field by offering precision-driven strategies that address the underlying mechanisms of bone fragility. This chapter explores the mechanisms of action of various biologics, including Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL) inhibitors, monoclonal antibodies targeting sclerostin, parathyroid hormone (PTH) analogues, and cathepsin K inhibitors. It discusses their potential benefits, limitations, and safety considerations, while shedding light on the promise of combination therapies that merge biologic agents with traditional approaches. Furthermore, the chapter delves into the potential applications of biologic agents in specific patient populations, the role of biomarkers in predicting treatment responses, and the influence of emerging biological targets. It also explores the advancements in novel targets and drug delivery systems that aim to enhance treatment convenience and effectiveness. By tailoring treatments based on patient characteristics and exploring novel therapeutic targets, the chapter envisions a future of precision medicine in osteoporosis care. As research continues to evolve, the chapter anticipates a transformative impact on bone health outcomes, fracture prevention, and overall quality of life for individuals at risk of osteoporosis-related fractures. Through comprehensive insights into the mechanisms, applications, and future directions of biologic agents, this chapter offers a holistic perspective on the evolving landscape of osteoporosis management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nazrun, A. S., Tzar, M. N., Mokhtar, S. A., & Mohamed, I. N. (2014). A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: morbidity, subsequent fractures, and mortality. Therapeutics and Clinical Risk Management, 10, 937–948. https://doi.org/10.2147/TCRM.S72456

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chandran, M., Brind’Amour, K., Fujiwara, S., Ha, Y. C., Tang, H., Hwang, J. S., Tinker, J., & Eisman, J. A. (2023). Prevalence of osteoporosis and incidence of related fractures in developed economies in the Asia Pacific region: a systematic review. Osteoporosis International, 34(6), 1037–1053. https://doi.org/10.1007/s00198-022-06657-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sözen, T., Özışık, L., & Başaran, N. Ç. (2017). An overview and management of osteoporosis. European Journal of Rheumatology, 4(1), 46–56. https://doi.org/10.5152/eurjrheum.2016.048. Epub 2016 Dec 30.

    Article  PubMed  Google Scholar 

  4. Salari, N., Ghasemi, H., Mohammadi, L., Behzadi, M. H., Rabieenia, E., Shohaimi, S., & Mohammadi, M. (2021). The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 16(1), 609. https://doi.org/10.1186/s13018-021-02772-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kling, J. M., Clarke, B. L., & Sandhu, N. P. (2014). Osteoporosis prevention, screening, and treatment: a review. Journal of Women’s Health (Larchmt), 23(7), 563–572. https://doi.org/10.1089/jwh.2013.4611

    Article  Google Scholar 

  6. Tu, K. N., Lie, J. D., Wan, C. K. V., Cameron, M., Austel, A. G., Nguyen, J. K., Van, K., & Hyun, D. (2018). Osteoporosis: a review of treatment options. Pharmacy and Therapeutics, 43(2), 92–104.

    PubMed  PubMed Central  Google Scholar 

  7. Tella, S. H., & Gallagher, J. C. (2014). Biological agents in management of osteoporosis. Eur J ClinPharmacol., 70(11), 1291–1301. https://doi.org/10.1007/s00228-014-1735-5

    Article  CAS  Google Scholar 

  8. Pazianas, M., van der Geest, S., & Miller, P. (2014). Bisphosphonates and bone quality. Bonekey Rep., 3, 529. https://doi.org/10.1038/bonekey.2014.24.PMID:24876930;PMCID:PMC4037878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noh, J. Y., Yang, Y., & Jung, H. (2020). Molecular mechanisms and emerging therapeutics for osteoporosis. International Journal of Molecular Sciences, 21(20), 7623. https://doi.org/10.3390/ijms21207623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villa, J. C., Gianakos, A., & Lane, J. M. (2016). Bisphosphonate treatment in osteoporosis: optimal duration of therapy and the incorporation of a drug holiday. HSS Journal, 12(1), 66–73. https://doi.org/10.1007/s11420-015-9469-1. Epub 2015 Dec 9.

    Article  PubMed  Google Scholar 

  11. Zhang, N., Zhang, Z. K., Yu, Y., Zhuo, Z., Zhang, G., & Zhang, B. T. (2020). Pros and cons of denosumab treatment for osteoporosis and implication for RANKL aptamer therapy. Frontiers in Cell and Developmental Biology, 8, 325. https://doi.org/10.3389/fcell.2020.00325

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gosset, A., Pouillès, J. M., & Trémollieres, F. (2021). Menopausal hormone therapy for the management of osteoporosis. Best Practice & Research Clinical Endocrinology & Metabolism, 35(6), 101551. https://doi.org/10.1016/j.beem.2021.101551

    Article  CAS  Google Scholar 

  13. Kulak Júnior, J., Kulak, C. A., & Taylor, H. S. (2010). SERMs in the prevention and treatment of postmenopausal osteoporosis: an update. Arquivos Brasileiros de Endocrinologia & Metabologia, 54(2), 200–205. https://doi.org/10.1590/s0004-27302010000200016

    Article  Google Scholar 

  14. Chiodini, I., & Bolland, M. J. (2018). Calcium supplementation in osteoporosis: useful or harmful? European Journal of Endocrinology, 178(4), D13–D25. https://doi.org/10.1530/EJE-18-0113

    Article  CAS  PubMed  Google Scholar 

  15. Liu, C., Kuang, X., Li, K., Guo, X., Deng, Q., & Li, D. (2020). Effects of combined calcium and vitamin D supplementation on osteoporosis in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Food & Function, 11(12), 10817–10827. https://doi.org/10.1039/d0fo00787k

    Article  CAS  Google Scholar 

  16. Vogelvang, T. E., van der Mooren, M. J., & Mijatovic, V. (2004). Hormone replacement therapy, selective estrogen receptor modulators, and tissue-specific compounds: cardiovascular effects and clinical implications. Treatments in Endocrinology, 3(2), 105–115. https://doi.org/10.2165/00024677-200403020-00005

    Article  CAS  PubMed  Google Scholar 

  17. Khosla, S., Bilezikian, J. P., Dempster, D. W., Lewiecki, E. M., Miller, P. D., Neer, R. M., Recker, R. R., Shane, E., Shoback, D., & Potts, J. T. (2012). Benefits and risks of bisphosphonate therapy for osteoporosis. J ClinEndocrinolMetab., 97(7), 2272–2282. https://doi.org/10.1210/jc.2012-1027

    Article  CAS  Google Scholar 

  18. Zaheer, S., LeBoff, M., & Lewiecki, E. M. (2015). Denosumab for the treatment of osteoporosis. Expert Opin Drug MetabToxicol., 11(3), 461–470. https://doi.org/10.1517/17425255.2015.1000860. Epub 2015 Jan 22.

    Article  CAS  Google Scholar 

  19. Kearns, A. E., Khosla, S., & Kostenuik, P. J. (2008). Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocrine Reviews, 29(2), 155–192. https://doi.org/10.1210/er.2007-0014. Epub 2007 Dec 5.

    Article  CAS  PubMed  Google Scholar 

  20. Hofbauer, L. C., & Schoppet, M. (2004). Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA, 292(4), 490–495. https://doi.org/10.1001/jama.292.4.490

    Article  CAS  PubMed  Google Scholar 

  21. Grimaud, E., Soubigou, L., Couillaud, S., Coipeau, P., Moreau, A., Passuti, N., Gouin, F., Redini, F., & Heymann, D. (2003). Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. American Journal of Pathology, 163(5), 2021–2031. https://doi.org/10.1016/s0002-9440(10)63560-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyce, B. F., & Xing, L. (2008). Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch BiochemBiophys., 473(2), 139–146. https://doi.org/10.1016/j.abb.2008.03.018. Epub 2008 Mar 25.

    Article  CAS  Google Scholar 

  23. Anastasilakis, A. D., Toulis, K. A., Polyzos, S. A., Anastasilakis, C. D., & Makras, P. (2012). Long-term treatment of osteoporosis: safety and efficacy appraisal of denosumab. TherClin Risk Manag., 8, 295–306. https://doi.org/10.2147/TCRM.S24239. Epub 2012 Jun 19.

    Article  CAS  Google Scholar 

  24. McClung, M. (2007). Role of RANKL inhibition in osteoporosis. Arthritis Research & Therapy, 9(Suppl 1), S3. https://doi.org/10.1186/ar2167

    Article  CAS  Google Scholar 

  25. Augustine, M., & Horwitz, M. J. (2013). Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis. Current Osteoporosis Reports, 11(4), 400–406. https://doi.org/10.1007/s11914-013-0171-2

    Article  PubMed  Google Scholar 

  26. Migliore, A., Broccoli, S., Massafra, U., Bizzi, E., & Frediani, B. (2012). Mixed-treatment comparison of anabolic (teriparatide and PTH 1–84) therapies in women with severe osteoporosis. Current Medical Research and Opinion, 28(3), 467–473. https://doi.org/10.1185/03007995.2012.659724

    Article  CAS  PubMed  Google Scholar 

  27. Pietrogrande, L., & Raimondo, E. (2018). Abaloparatide for the treatment of postmenopausal osteoporosis. Drugs of Today (Barcelona, Spain), 54(5), 293–303. https://doi.org/10.1358/dot.2018.54.5.2800621

    Article  CAS  Google Scholar 

  28. Miller, P. D., Hattersley, G., Riis, B. J., Williams, G. C., Lau, E., Russo, L. A., Alexandersen, P., Zerbini, C. A., Hu, M. Y., Harris, A. G., Fitzpatrick, L. A., Cosman, F., Christiansen, C., ACTIVE Study Investigators. (2016). Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: A randomized clinical trial. JAMA, 316(7), 722–733. https://doi.org/10.1001/jama.2016.11136. Erratum in: JAMA. 2017;317(4):442.

    Article  CAS  PubMed  Google Scholar 

  29. Leder, B. Z., Tsai, J. N., Uihlein, A. V., Wallace, P. M., Lee, H., Neer, R. M., & Burnett-Bowie, S. A. (2015). Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet, 386(9999), 1147–1155. https://doi.org/10.1016/S0140-6736(15)61120-5. Epub 2015 Jul 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ponnapakkam, T., Katikaneni, R., Sakon, J., Stratford, R., & Gensure, R. C. (2014). Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discovery Today, 19(3), 204–208. https://doi.org/10.1016/j.drudis.2013.07.015. Epub 2013 Aug 6.

    Article  CAS  PubMed  Google Scholar 

  31. Horwitz, M. J., Tedesco, M. B., Garcia-Ocaña, A., Sereika, S. M., Prebehala, L., Bisello, A., Hollis, B. W., Gundberg, C. M., & Stewart, A. F. (2010). Parathyroid hormone-related protein for the treatment of postmenopausal osteoporosis: defining the maximal tolerable dose. The Journal of Clinical Endocrinology & Metabolism, 95(3), 1279–1287. https://doi.org/10.1210/jc.2009-0233

    Article  CAS  Google Scholar 

  32. Manolagas, S. C. (2014). Wnt signalling and osteoporosis. Maturitas, 78(3), 233–237. https://doi.org/10.1016/j.maturitas.2014.04.013. Epub 2014 Apr 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shahnazari, M., Yao, W., Corr, M., & Lane, N. E. (2008). Targeting the Wnt signalling pathway to augment bone formation. Current Osteoporosis Reports, 6(4), 142–148. https://doi.org/10.1007/s11914-008-0025-5

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pinzone, J. J., Hall, B. M., Thudi, N. K., Vonau, M., Qiang, Y. W., Rosol, T. J., & Shaughnessy, J. D., Jr. (2009). The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood, 113(3), 517–525. https://doi.org/10.1182/blood-2008-03-145169. Epub 2008 Aug 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vasiliadis, E. S., Evangelopoulos, D. S., Kaspiris, A., Benetos, I. S., Vlachos, C., & Pneumaticos, S. G. (2022). The role of sclerostin in bone diseases. Journal of Clinical Medicine, 11(3), 806. https://doi.org/10.3390/jcm11030806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, S., Li, D., Zhang, N., Ni, S., Sun, M., Wang, L., Xiao, H., Liu, D., Liu, J., Yu, Y., Zhang, Z., Yeung, S. T. Y., Zhang, S., Lu, A., Zhang, Z., Zhang, B., & Zhang, G. (2022). Drug discovery of sclerostin inhibitors. Acta Pharmaceutica Sinica B, 12(5), 2150–2170. https://doi.org/10.1016/j.apsb.2022.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clarke, B. L. (2014). Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas, 78(3), 199–204. https://doi.org/10.1016/j.maturitas.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharyya, S., Pal, S., & Chattopadhyay, N. (2018). Targeted inhibition of sclerostin for post-menopausal osteoporosis therapy: a critical assessment of the mechanism of action. European Journal of Pharmacology, 826, 39–47. https://doi.org/10.1016/j.ejphar.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  39. Padhi, D., Allison, M., Kivitz, A. J., Gutierrez, M. J., Stouch, B., Wang, C., & Jang, G. (2014). Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: A randomized, double-blind, placebo-controlled study. The Journal of Clinical Pharmacology, 54(2), 168–178. https://doi.org/10.1002/jcph.239

    Article  CAS  PubMed  Google Scholar 

  40. Recker, R. R., Benson, C. T., Matsumoto, T., Bolognese, M. A., Robins, D. A., Alam, J., Chiang, A. Y., Hu, L., Krege, J. H., Sowa, H., Mitlak, B. H., & Myers, S. L. (2015). A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. Journal of Bone and Mineral Research, 30(2), 216–224. https://doi.org/10.1002/jbmr.2351

    Article  CAS  PubMed  Google Scholar 

  41. Cosman, F., Crittenden, D. B., Adachi, J. D., Binkley, N., Czerwinski, E., Ferrari, S., Hofbauer, L. C., Lau, E., Lewiecki, E. M., Miyauchi, A., Zerbini, C. A., Milmont, C. E., Chen, L., Maddox, J., Meisner, P. D., Libanati, C., & Grauer, A. (2016). Romosozumab treatment in postmenopausal women with osteoporosis. New England Journal of Medicine, 375(16), 1532–1543. https://doi.org/10.1056/NEJMoa1607948

    Article  CAS  PubMed  Google Scholar 

  42. Su, Y., Wang, W., Liu, F., Cai, Y., Li, N., Li, H., Li, G., & Ma, L. (2022). Blosozumab in the treatment of postmenopausal women with osteoporosis: A systematic review and meta-analysis. Annals of Palliative Medicine, 11(10), 3203–3212. https://doi.org/10.21037/apm-22-998

    Article  PubMed  Google Scholar 

  43. Joiner, D. M., Ke, J., Zhong, Z., Xu, H. E., & Williams, B. O. (2013). LRP5 and LRP6 in development and disease. Trends in Endocrinology & Metabolism, 24(1), 31–39. https://doi.org/10.1016/j.tem.2012.10.003

    Article  CAS  Google Scholar 

  44. He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signalling: arrows point the way. Development, 131(8), 1663–1677. https://doi.org/10.1242/dev.01117

    Article  CAS  PubMed  Google Scholar 

  45. Helali, A. M., Iti, F. M., & Mohamed, I. N. (2013). Cathepsin K inhibitors: a novel target but promising approach in the treatment of osteoporosis. Current Drug Targets, 14(13), 1591–1600. https://doi.org/10.2174/13894501113149990202

    Article  CAS  PubMed  Google Scholar 

  46. Mijanovic, O., Jakovleva, A., Branković, A., Zdravkova, K., Pualic, M., Belozerskaya, T. A., Nikitkina, A. I., Parodi, A., & Zamyatnin, A. A., Jr. (2022). Cathepsin K in pathological conditions and new therapeutic and diagnostic perspectives. International Journal of Molecular Sciences, 23(22), 13762. https://doi.org/10.3390/ijms232213762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bromme, D., & Lecaille, F. (2009). Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opinion on Investigational Drugs., 18(5), 585–600. https://doi.org/10.1517/13543780902832661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, J., Wang, M., Wang, Z., Fu, Z., Lu, A., & Zhang, G. (2018). Advances in the discovery of cathepsin K inhibitors on bone resorption. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 890–904. https://doi.org/10.1080/14756366.2018.1465417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Drake, M. T., Clarke, B. L., Oursler, M. J., & Khosla, S. (2017). Cathepsin K Inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocrine Reviews, 38(4), 325–350. https://doi.org/10.1210/er.2015-1114

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mukherjee, K., & Chattopadhyay, N. (2016). Pharmacological inhibition of cathepsin K: a promising novel approach for postmenopausal osteoporosis therapy. Biochemical Pharmacology., 117, 10–19. https://doi.org/10.1016/j.bcp.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  51. Boggild, M. K., Gajic-Veljanoski, O., McDonald-Blumer, H., Ridout, R., Tile, L., Josse, R., & Cheung, A. M. (2015). Odanacatib for the treatment of osteoporosis. Expert Opinion on Pharmacotherapy, 16(11), 1717–1726. https://doi.org/10.1517/14656566.2015.1064897

    Article  CAS  PubMed  Google Scholar 

  52. McClung, M. R., O’Donoghue, M. L., Papapoulos, S. E., Bone, H., Langdahl, B., Saag, K. G., Reid, I. R., Kiel, D. P., Cavallari, I., Bonaca, M. P., Wiviott, S. D., de Villiers, T., Ling, X., Lippuner, K., Nakamura, T., Reginster, J. Y., Rodriguez-Portales, J. A., Roux, C., Zanchetta, J., … Sabatine, M. S. (2019). Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study. The Lancet Diabetes & Endocrinology., 7(12), 899–911. https://doi.org/10.1016/S2213-8587(19)30346-8

    Article  CAS  Google Scholar 

  53. Runger, T. M., Adami, S., Benhamou, C. L., Czerwiński, E., Farrerons, J., Kendler, D. L., Mindeholm, L., Realdi, G., Roux, C., & Smith, V. (2012). Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib. Journal of the American Academy of Dermatology, 66(3), e89-96. https://doi.org/10.1016/j.jaad.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  54. Ramli, F. F., & Chin, K. Y. (2020). A review of the potential application of osteocyte-related biomarkers, fibroblast growth factor-23, Sclerostin, and Dickkopf-1 in predicting osteoporosis and fractures. Diagnostics (Basel)., 10(3), 145. https://doi.org/10.3390/diagnostics10030145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Katagiri, T., Tsukamoto, S., & Kuratani, M. (2021). Accumulated knowledge of activin receptor-like kinase 2 (ALK2)/activin A receptor, type 1 (ACVR1) as a target for human disorders. Biomedicines., 9(7), 736. https://doi.org/10.3390/biomedicines9070736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sirikul, W., Siri-Angkul, N., Chattipakorn, N., & Chattipakorn, S. C. (2022). Fibroblast growth factor 23 and osteoporosis: evidence from bench to bedside. International Journal of Molecular Sciences, 23(5), 2500. https://doi.org/10.3390/ijms23052500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vanhoutte, F., Liang, S., Ruddy, M., Zhao, A., Drewery, T., Wang, Y., DelGizzi, R., Forleo-Neto, E., Rajadhyaksha, M., Herman, G., & Davis, J. D. (2020). Pharmacokinetics and pharmacodynamics of garetosmab (anti-activin A): Results from a first-in-human phase 1 study. The Journal of Clinical Pharmacology, 60(11), 1424–1431. https://doi.org/10.1002/jcph.1638

    Article  CAS  PubMed  Google Scholar 

  58. Dent, R., Joshi, R., Stephen Djedjos, C., Legg, J., Elliott, M., Geller, M., Meyer, D., Somaratne, R., Recknor, C., & Weiss, R. (2016). Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. Springerplus, 5, 300. https://doi.org/10.1186/s40064-016-1892-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bays, H. E., Leiter, L. A., Colhoun, H. M., Thompson, D., Bessac, L., Pordy, R., & Toth, P. P. (2017). Alirocumab treatment and achievement of non-high-density lipoprotein cholesterol and apolipoprotein B goals in patients with hypercholesterolemia: Pooled results from 10 phase 3 ODYSSEY trials. Journal of the American Heart Association, 6(8), e005639. https://doi.org/10.1161/JAHA.117.005639

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lv, F., Cai, X., Lin, C., Yang, W., Hu, S., & Ji, L. (2023). Proprotein convertase subtilisin/kexin type 9 inhibitors and the risk of fracture: a systematic review and meta-analysis of randomized controlled trials. Calcified Tissue International, 113(2), 175–185. https://doi.org/10.1007/s00223-023-01085-0

    Article  CAS  PubMed  Google Scholar 

  61. McCarthy, A. D., Cortizo, A. M., & Sedlinsky, C. (2016). Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy. World Journal of Diabetes, 7(6), 122–133. https://doi.org/10.4239/wjd.v7.i6.122

    Article  PubMed  PubMed Central  Google Scholar 

  62. Damerau, A., Gaber, T., Ohrndorf, S., & Hoff, P. (2020). JAK/STAT activation: a general mechanism for bone development, homeostasis, and regeneration. International Journal of Molecular Sciences, 21(23), 9004. https://doi.org/10.3390/ijms21239004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cosman, F. (2014). Combination therapy for osteoporosis: A reappraisal. Bonekey Reports., 3, 518. https://doi.org/10.1038/bonekey.2014.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eastell, R., & Hannon, R. A. (2008). Biomarkers of bone health and osteoporosis risk. The Proceedings of the Nutrition Society, 67(2), 157–162. https://doi.org/10.1017/S002966510800699X

    Article  PubMed  Google Scholar 

  65. Bodaghi, A., Fattahi, N., & Ramazani, A. (2023). Biomarkers: promising and valuable tools towards diagnosis, prognosis and treatment of COVID-19 and other diseases. Heliyon., 9(2), e13323. https://doi.org/10.1016/j.heliyon.2023.e13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Califf, R. M. (2018). Biomarker definitions and their applications. Experimental Biology and Medicine (Maywood)., 243(3), 213–221. https://doi.org/10.1177/1535370217750088

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Shankar Jha.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S.S. Biologics: Teriparatide and Newer Anabolics. JOIO 57 (Suppl 1), 135–146 (2023). https://doi.org/10.1007/s43465-023-01063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-01063-6

Keywords

Navigation