Skip to main content

Advertisement

Log in

Is the Akagi Line a Reliable Landmark for Adjusting the Rotational Axis of the Tibial Component in Patients with Patellofemoral Instability?

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate whether the Akagi line is a reliable anatomic landmark for adjusting the rotational axis of the tibial component in patients with patellofemoral (PF) malalignment.

Materials and methods

This retrospective case–control study included 86 patients with PF instability and 129 controls. On the superimposed axial CT images, TT-TG, TT-PCL, nTT-TG, nTT-PCL, knee joint rotation, and the angle between the Akagi line and surgical transepicondylar axis (Akagi/sTEA angle) were measured. In addition, a modified Akagi line, drawn 1 cm medial to the patellar tendon attachment, was defined, and the angle between the new Akagi line and sTEA (mAkagi/sTEA angle) was also measured and compared between groups.

Results

There were 86 patients (47 females, 39 males) in the case group and 129 patients (56 females, 73 males) in the control group with a mean age of 35.7 ± 17.9 years and 41.1 ± 18.8 years, respectively (p < 0.001). Radiologic variables of PF alignment (TT-TG, TT-PCL, nTT-TG, nTT-PCL, and knee joint rotation) were significantly abnormal in the case group (p < 0.001 for all variables). The Akagi/sTEA angle was significantly higher in the case group, resulting in 89.5% external malrotation of the tibial component (> 10°). However, the tibial component was 96.5% aligned correctly (between 10° external and 3° internal rotation) in the control group. Using the modified Akagi line significantly improved the rotational alignment, and normal tibial rotation increased to 93.3% of the case group. The Akagi/sTEA angle strongly correlated with the knee rotation (rho: 0.735, p: 0.001), TT-TG (rho: 0.715, p: 0.001) and nTT-TG (rho: 0.783, p: 0.001). But the TT-PCL (rho: 0.459, p: 0.001) and nTT-PCL (rho: 0.589, p: 0.001) had a medium correlation.

Conclusions

The Akagi line might cause unacceptable external rotation of the tibial component in patients with PF malalignment. The use of the modified Akagi line described in this study may be a solution for the rotational mismatch between femoral and tibial components in TKA.

Level of evidence

Level III, retrospective case–control study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Abbreviations

TKA:

Total knee arthroplasty

OA:

Osteoarthritis

TT:

Tibial tubercle

sTEA:

Surgical transepicondylar axis

CT:

Computerized tomography

PF:

Patellofemoral

PACS:

Picture archiving and communication systems

TT-TG:

Tibial tubercle-Trochlear groove

nTT-TG:

Normalized Tibial tubercle-Trochlear groove

TT-PCL:

Tibial tubercle-Posterior cruciate ligament

nTT-PCL:

Normalized Tibial tubercle-Posterior cruciate ligament

TMMA:

Tibial maximal mediolateral axis

ICC:

Interclass correlation coefficient

IRB:

Institutional review board

References

  1. Bell, S. W., Young, P., Drury, C., et al. (2014). Component rotational alignment in unexplained painful primary total knee arthroplasty. The Knee, 21, 272–277. https://doi.org/10.1016/j.knee.2012.09.011

    Article  PubMed  Google Scholar 

  2. Kahlenberg, C. A., Nwachukwu, B. U., McLawhorn, A. S., et al. (2018). Patient satisfaction after total knee replacement: A systematic review. HSS Journal, 14, 192–201. https://doi.org/10.1007/s11420-018-9614-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lim, H. A., Song, E. K., Seon, J. K., et al. (2017). Causes of aseptic persistent pain after total knee arthroplasty. CiOS Clin Orthop Surg, 9, 50–56. https://doi.org/10.4055/cios.2017.9.1.50

    Article  PubMed  Google Scholar 

  4. Tandogan R, Indelli P, Saffarini M, et al (2017) Tibial Rotational Alignment in Total Knee Arthroplasty Preliminary Report of the Tibial Rotation Study Group of European Knee Associates ( EKA ) https://cdn.ymaws.com/esska.siteym.com/resource/resmgr/docs/forms_and_documents/Tibial_Rotational_Prelim_rep.pdf Accessed 6 May 2022

  5. Akagi, M., Oh, M., Nonaka, T., et al. (2004). An anteroposterior axis of the tibia for total knee arthroplasty. Clinical Orthopedic Related Research. https://doi.org/10.1097/00003086-200403000-00030

    Article  Google Scholar 

  6. Aglietti, P., Sensi, L., Cuomo, P., & Ciardullo, A. (2008). Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clinical Orthopaedics and Related Research, 466, 2751–2755. https://doi.org/10.1007/s11999-008-0452-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dejour, H., Walch, G., Nove-Josserand, L., & Guier, C. (1994). Knee Surgery sports traumatology i arthroscopy patellar problems factors of patellar instability: An anatomic radiographic study. Knee Surg, Sport Traumatol, 2, 19–26.

    Article  CAS  Google Scholar 

  8. Seitlinger, G., Scheurecker, G., Högler, R., et al. (2012). Tibial tubercle-posterior cruciate ligament distance: A new measurement to define the position of the tibial tubercle in patients with patellar dislocation. American Journal of Sports Medicine, 40, 1119–1125. https://doi.org/10.1177/0363546512438762

    Article  PubMed  Google Scholar 

  9. Cho, Y., & Lee, M. C. (2014). Rotational alignment in total knee arthroplasty. Asia-Pacific Journal Sport Medical Arthrosc Rehabil Technol, 1, 113–118. https://doi.org/10.1016/j.asmart.2014.08.001

    Article  Google Scholar 

  10. Wagner, F., Maderbacher, G., Matussek, J., et al. (2019). A knee size-ındependent parameter for malalignment of the distal patellofemoral joint in children. Advanced Orthopedic. https://doi.org/10.1155/2019/3496936

    Article  Google Scholar 

  11. Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  12. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/bf03193146

    Article  PubMed  Google Scholar 

  13. Dalury, D. F. (2001). Observations of the proximal tibia in total knee arthroplasty. Clinical Orthopedic Related Research. https://doi.org/10.1097/00003086-200108000-00021

    Article  Google Scholar 

  14. Uehara, K., Kadoya, Y., Kobayashi, A., et al. (2002). Bone anatomy and rotational alignment in total knee arthroplasty. Clinical Orthopedic Related Research. https://doi.org/10.1097/00003086-200209000-00018

    Article  Google Scholar 

  15. Bonnin, M. P., Saffarini, M., Mercier, P.-E., et al. (2011). Is the anterior tibial tuberosity a reliable rotational landmark for the tibial component in total knee arthroplasty? Journal of Arthroplasty, 26, 260–262. https://doi.org/10.1016/j.arth.2010.03.015

    Article  PubMed  Google Scholar 

  16. Kawahara, S., Okazaki, K., Matsuda, S., et al. (2014). Medial sixth of the patellar tendon at the tibial attachment is useful for the anterior reference in rotational alignment of the tibial component. Knee Surgery, Sports Traumatology, Arthroscopy, 22, 1070–1075. https://doi.org/10.1007/s00167-013-2468-1

    Article  PubMed  Google Scholar 

  17. Kim, Y.-H., Park, J.-W., Kim, J.-S., & Park, S.-D. (2014). The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. International Orthopaedics, 38, 379–385. https://doi.org/10.1007/s00264-013-2097-9

    Article  PubMed  Google Scholar 

  18. Lützner, J., Krummenauer, F., Günther, K.-P., & Kirschner, S. (2010). Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskeletal Disorders, 11, 57. https://doi.org/10.1186/1471-2474-11-57

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sahin, N., Atıcı, T., Kurtoğlu, Ü., et al. (2013). Centre of the posterior cruciate ligament and the sulcus between tubercle spines are reliable landmarks for tibial component placement. Knee Surgery, Sports Traumatology, Arthroscopy, 21, 2384–2391. https://doi.org/10.1007/s00167-012-2120-5

    Article  PubMed  Google Scholar 

  20. Sun, T., Lu, H., Hong, N., et al. (2009). Bony landmarks and rotational alignment in total knee arthroplasty for Chinese osteoarthritic knees with varus or valgus deformities. Journal of Arthroplasty, 24, 427–431. https://doi.org/10.1016/j.arth.2007.11.021

    Article  PubMed  Google Scholar 

  21. Baldini, A., Indelli, P. F., Luca, D. E., L, et al. (2013). Rotational alignment of the tibial component in total knee arthroplasty: The anterior tibial cortex is a reliable landmark. Joints. https://doi.org/10.11138/jts/2013.1.4.1455

    Article  PubMed  Google Scholar 

  22. Graw, B. P., Harris, A. H., Tripuraneni, K. R., & Giori, N. J. (2010). Rotational references for total knee arthroplasty tibial components change with level of resection. Clinical Orthopaedics and Related Research, 468, 2734–2738. https://doi.org/10.1007/s11999-010-1330-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Siston, R. A., Goodman, S. B., Patel, J. J., et al. (2006). The high variability of tibial rotational alignment in total knee arthroplasty. Clinical Orthopaedics and Related Research, 452, 65–69. https://doi.org/10.1097/01.blo.0000229335.36900.a0

    Article  PubMed  Google Scholar 

  24. Saffarini, M., Nover, L., Tandogan, R., et al. (2019). The original Akagi line is the most reliable: A systematic review of landmarks for rotational alignment of the tibial component in TKA. Knee Surgery, Sports Traumatology, Arthroscopy, 27, 1018–1027. https://doi.org/10.1007/s00167-018-5131-z

    Article  PubMed  Google Scholar 

  25. Bernholt D, Lamplot JD, Eutsler E, Nepple JJ (2018) The role of abnormal tibiofemoral rotation in pediatric and adolescent patellar ınstability. Orthopedic Journal. Sport. Medicine. 6

  26. Lin, K. M., James, E. W., Aitchison, A. H., et al. (2021). Increased tibiofemoral rotation on MRI with increasing clinical severity of patellar instability. Knee Surgery, Sports Traumatology, Arthroscopy, 29, 3735–3742. https://doi.org/10.1007/s00167-020-06382-x

    Article  PubMed  Google Scholar 

  27. Kawaguchi, K., Inui, H., Taketomi, S., et al. (2021). Preoperative tibiofemoral rotational alignment is a risk factor for component rotational mismatch in total knee arthroplasty. The Knee, 29, 448–456. https://doi.org/10.1016/j.knee.2021.02.028

    Article  PubMed  Google Scholar 

  28. Lee, D. H., Seo, J. G., & Moon, Y. W. (2008). Synchronisation of tibial rotational alignment with femoral component in total knee arthroplasty. International Orthopaedics, 32, 223–227. https://doi.org/10.1007/s00264-006-0310-9

    Article  PubMed  Google Scholar 

  29. Yike, D., Tianjun, M., Heyong, Y., et al. (2021). Different rotational alignment of tibial component should be selected for varied tibial tubercle locations in total knee arthroplasty. Knee Surgery, Sport Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06774-7

    Article  Google Scholar 

  30. Heekin, R. D., & Fokin, A. A. (2014). Incidence of bicompartmental osteoarthritis in patients undergoing total and unicompartmental knee arthroplasty: Is the time ripe for a less radical treatment? The Journal of Knee Surgery, 27, 77–81. https://doi.org/10.1055/s-0033-1349401

    Article  PubMed  Google Scholar 

  31. van Middelkoop, M., Bennell, K. L., Callaghan, M. J., et al. (2018). International patellofemoral osteoarthritis consortium: Consensus statement on the diagnosis, burden, outcome measures, prognosis, risk factors and treatment. Seminars in Arthritis and Rheumatism, 47, 666–675. https://doi.org/10.1016/j.semarthrit.2017.09.009

    Article  PubMed  Google Scholar 

  32. Sanders, T. L., Pareek, A., Johnson, N. R., et al. (2017). Patellofemoral arthritis after lateral patellar dislocation: a matched population-based analysis. American Journal of Sports Medicine, 45, 1012–1017. https://doi.org/10.1177/0363546516680604

    Article  PubMed  Google Scholar 

  33. Eijkenboom, J. F. A., Waarsing, J. H., Oei, E. H. G., et al. (2018). Is patellofemoral pain a precursor to osteoarthritis?: Patellofemoral osteoarthritis and patellofemoral pain patients share aberrant patellar shape compared with healthy controls. Bone Joint Res, 7, 541–547. https://doi.org/10.1302/2046-3758.79.BJR-2018-0112.R1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funds have been received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MBE, OK, ET, Acquisition of data: MBE, OK, ET, MMA, Analysis and interpretation of data: OK, AC, ID, MMA, Drafting of the manuscript: MBE, OK, AC, ID, MMA, ET, Critical revision: OK, AC, ET, ID, MMA, MBE (Initials of authors’ names).

Corresponding author

Correspondence to Ozkan Kose.

Ethics declarations

Conflict of İnterest

Authors have no conflict of interest to declare.

Ethical Approval

Institutional Review Board approved the study protocol (Date/Issue: 2021/137).

Informed consent

Written informed consent was provided by the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertan, M.B., Kose, O., Tasatan, E. et al. Is the Akagi Line a Reliable Landmark for Adjusting the Rotational Axis of the Tibial Component in Patients with Patellofemoral Instability?. JOIO 57, 838–846 (2023). https://doi.org/10.1007/s43465-023-00868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-00868-9

Keywords

Navigation