Skip to main content

Advertisement

Log in

Accuracy and Validity of Sharma’s Venn Diagram Method for Assessment of Tibial Component Rotation in Total Knee Arthroplasty

  • Surgical Technique
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Malrotation of the tibial component in a total knee replacement leads to anterior knee pain, patella dislocations, extensor mechanism disruptions, knee stiffness and prosthesis loosening. Techniques like free-floating technique, medial 1/3 rd of the tibial tubercle, medial border of the tibial tuberosity, Akagi’s line, transcondylar line of tibia, posterior condylar line of tibia, midsulcus of tibial spines, curve on curve technique have been advocated. None of these have been shown to be accurate and reproducible. We developed a novel ‘Sharma’s Venn Diagram’ method to assess the tibial component rotation.

Methods

Fifty-two consecutive knee replacements were included in a prospective observational study. The average age of the study group was 53.6 years (48–76 years) Thirty-one were females and 3 were males. The patients were followed a minimum of one years (max 2 years, average 1.8 years). ‘Sharma’s Venn diagram Method (C)’ was compared to free-floating method (F) and post-op CT scans using Berger protocol (B).

Results

Tibial rotation calculated using Sharma’s Venn diagram method (C) coincided with the final component placement in 50/52 knees. The free floating method (F) coincided with method (C) in 30/52 knees with an average 4.8° external rotation in 5 knees and an average of 5.2° internal rotation in 17 knees. Bland Altman method was used to compare method (C) with Method (F), The difference was statistically significant p < 0.0001.

Conclusion

Sharma’s Venn diagram method is reliable, accurate and easily reproducible by any surgeon performing tkr and correlates with postoperative 2D CT-based assessment of tibial component rotation.

Level II Study

Prospective observational study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berger, R. A., Crossett, L. S., Jacobs, J. J., et al. (1998). Malrotation causing patellofemoral complications after total knee arthroplasty. Clinical Orthopaedics and Related Research, 356, 144–153.

    Article  Google Scholar 

  2. Barrack, R. L., Schrader, T., Bertot, A. J., et al. (2001). Component rotation and anterior knee pain after total knee arthroplasty. Clinical Orthopaedics and Related Research, 392, 46–55.

    Article  Google Scholar 

  3. Bell, S. W., Young, P., Drury, C., et al. (2014). Component rotational alignment in unexplained painful primary total knee arthroplasty. The Knee, 21, 272–277.

    Article  Google Scholar 

  4. Bedard, M., Vince, K. G., Redfern, J., et al. (2011). Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clinical Orthopaedics and Related Research, 469, 2346–2355.

    Article  Google Scholar 

  5. Lewis, P., Rorabeck, C. H., Bourne, R. B., & Devane, P. (1994). Posteromedial tibial polyethylene failure in total knee replacements. Clinical Orthopaedics, 299, 11–17.

    Article  Google Scholar 

  6. Wasielewski, R. C., Galante, J. O., Leighty, R. M., Natarajan, R. N., & Rosenverg, A. G. (1994). Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clinical Orthopaedics, 299, 31–43.

    Article  Google Scholar 

  7. Benjamin, J. (2006). Component alignment in total knee arthroplasty. Instructional Course Lectures, 55, 405–412.

    PubMed  Google Scholar 

  8. Insall, J. N. (1993). Surgical techniques and instrumentation in total knee arthroplasty. In J. N. Insall, R. E. Windsor, W. N. Scott, M. Kelly, & P. Aglietti (Eds.), Surgery of the knee ED 2 (pp. 739–804). Churchill-Livingstone.

    Google Scholar 

  9. Merkow, R. L., Soudry, M., & Insall, J. N. (1985). Patellar dislocation following total knee replacement. Journal of Bone and Joint Surgery. American Volume, 67, 1321–1327.

    Article  CAS  Google Scholar 

  10. Akagi, M., Oh, M., Nonaka, T., Tsujimoto, H., Asano, T., & Hamanishi, C. (2004). An anteroposterior axis of the tibia for total knee arthroplasty. Clinical Orthopaedics and Related Research, 420, 213–219.

    Article  Google Scholar 

  11. Eckhoff, D. G., Johnston, R. J., & Stamm, E. R. (1994). Version of the osteoarthritic knee. Journal of Arthroplasty, 9, 73–79.

    Article  CAS  Google Scholar 

  12. Moreland, J. R. (1988). Mechanisms of failure in total knee arthroplasty. Clinical Orthopaedics, 226, 49–64.

    Article  Google Scholar 

  13. Dalury, D. F. (2001). Observations of the proximal tibia in total knee arthroplasty. Clinical Orthopaedics, 389, 150–155.

    Article  Google Scholar 

  14. Baldini, A., Indelli, P. F., De Luca, L., et al. (2014). Rotational alignment of the tibial component in total knee arthroplasty: The anterior tibial cortex is a reliable landmark. Joints, 1, 155–160.

    PubMed  PubMed Central  Google Scholar 

  15. Berger, R. A., Rubash, H. E., Steel, M. J., et al. (1993). Determining the rotational alignment of the femoral component in total knee arthroplasty using epicondylar axis. Clinical Orthopaedics and Related Research, 286, 40–47.

    Article  Google Scholar 

  16. Insall, J. N., et al. (1989). Rationale of the Knee Society clinical rating system. Clinical Orthopaedics and Related Research, 248, 13–14.

    Article  Google Scholar 

  17. Anderson, D. E., & Cleaver, F. L. (1965). Venn-type diagrams for arguments of n terms. Journal of Symbolic Logic, 30, 113–118.

    Article  Google Scholar 

  18. Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia Medica (Zagreb)., 25(2), 141–151.

    Article  Google Scholar 

  19. Koch, G. G. (1982). Intraclass correlation coefficient. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of statistical sciences (4th ed., pp. 213–217). Wiley.

    Google Scholar 

  20. Incavo, S. J., Coughlin, K. M., Pappas, C., et al. (2003). Anatomic rotational relationships of the proximal tibia, distal femur and patella: implications for rotational alignment in total knee arthroplasty. Journal Arthroplasty, 18, 643–648.

    Article  Google Scholar 

  21. Lutzner, J., Krummenauer, F., Gunther, K. P., et al. (2010). Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskeletal Disorders, 11, 57.

    Article  Google Scholar 

  22. Uehara, K., Kadoya, Y., Kobayashi, A., et al. (2002). Bone anatomy and rotational alignment in total knee arthroplasty. Clinical Orthopaedics, 402, 196–201.

    Article  Google Scholar 

  23. Eckhoff, D. G., Metzger, R. G., & Vandewalle, M. V. (1995). Malrotation associated with implant alignment technique in total knee arthroplasty. Clinical Orthopaedics and Related Research, 321, 28–31.

    Google Scholar 

  24. Indelli, P. F., Graceffa, A., Marcucci, M., & Baldini, A. (2016). Rotational Alignment of the tibial component in total knee arthroplasty. Annals of Translational Medicine, 4(1), 3.

    PubMed  PubMed Central  Google Scholar 

  25. Ohmori, T., Kabata, T., Inoue, D., Taga, T., Yamamoto, T., et al. (2018). A proposed new rotating reference axis for the tibial component after proximal tibial resection in total knee arthroplasty. PLoS ONE, 13(12), e0209317.

    Article  CAS  Google Scholar 

  26. Saffarini, M., Nover, L., Tandogan, R., Becker, R., Moser, L. B., et al. (2018). The original Akagi line is the most reliable: A systematic review of landmarks for rotational alignment of the tibial component in TKA. Knee Surgery Sports Traumatology Arthroscopy., 27(4), 1–10.

    Google Scholar 

  27. Rossi, R., Bruzzone, M., Bonasia, D. E., et al. (2010). Evaluation of tibial rotational alignment in total knee arthroplasty:a cadaveric study. Knee Surgery, Sports Traumatology, Arthroscopy, 18, 889–893.

    Article  Google Scholar 

  28. Ngamine, R., Miura, H., Inoue, Y., et al. (1998). Reliability of the anteroposterior axis and the posterior condylar axis for determining rotational alignment of the femoral component in total knee arthroplasty. Journal of Orthopaedic Science, 3, 194–198.

    Article  Google Scholar 

  29. Martin, S., Saurez, A., Ismaily, S., et al. (2014). Maximising tibial coverage is detrimental to proper rotational alignment. Clinical Orthopaedics and Related Research, 472, 121–125.

    Article  Google Scholar 

  30. Dai, Y., Scuderi, G. R., Bischoff, J. E., Bertin, K., Tarabichi, S., & Rajgopal, A. (2014). Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: A comparison of six contemporary designs. Knee Surgery, Sports Traumatology, Arthroscopy., 22(12), 2911–2923.

    Article  Google Scholar 

  31. Siston, R. A., Goodman, S. B., Patel, M. S., Delp, S. L., & Giori, N. J. (2006). The high variability of tibial rotational alignment in total knee arthroplasty. Clinical Orthopaedics and Related Research, 452, 65–69.

    Article  Google Scholar 

  32. Ikeuchi, M., Yamanaka, N., Okanoue, Y., Ueta, E., & Tani, T. (2007). Determining the rotational alignment of the tibial component at total knee replacement. The Journal of Bone and Joint Surgery (Br), 89, 45–49.

    CAS  Google Scholar 

  33. Berhouet, J., Beaufils, P., Boisrenoult, P., Frasca, D., & Pujol, N. (2011). Rotational positioning of the tibial tray in total knee arthroplasty: A CT evaluation. Orthopedics & Traumatology: Surgery & Research., 97, 699–704.

    CAS  Google Scholar 

  34. Feczko, P. Z., Pijls, B. G., Steijn, M. J., Rhijn, L. W., Arts, J. J., et al. (2016). Tibial component rotation in total knee arthroplasty. BMC Musculoskeletal Disorders, 17, 87.

    Article  Google Scholar 

  35. Walter, S. D., Eliasziw, M., & Donner, A. (1998). Sample size and optimal design for reliability studies. Statistics in Medicine., 17, 101–110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Sharma.

Ethics declarations

Conflict of interest

The authors state that they have no financial disclosures of any kind and have not got any support from any institution/company.

Ethics approval

The study has been approved by the ethics approval committee of our institute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Dhanjani, B. & Upadhyaya, A.R. Accuracy and Validity of Sharma’s Venn Diagram Method for Assessment of Tibial Component Rotation in Total Knee Arthroplasty. JOIO 56, 1291–1302 (2022). https://doi.org/10.1007/s43465-022-00627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-022-00627-2

Keywords

Navigation