Skip to main content

Advertisement

Log in

Athlete Biological Passport: Need and Challenges

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

The Athlete Biological Passport programme was initiated in 2009 by the World Anti-Doping Agency for making the anti-doping programme more effective and stronger. There are three modules in this ABP programme: haematological, steroidal and endocrinological. Currently, the first two modules have been implemented. The newer products such as recombinant human erythropoietin, recombinant proteins, and peptides are similar to those produced naturally. Hence, detection of these substances even with advanced techniques is difficult. Therefore, the concept of ABP came into existence which is based on longitudinal monitoring of biological markers and their variations over a period of time. The ABP does not rely upon the detection of a particular prohibited substance but it reflects the changes in biological markers collated over an athlete’s career. Hence, athletes can be monitored through constant interpretation of the passport data. There are many advantages with the implementation of this programme; however, there are various issues which may lead to false interpretation of passport data that must be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABP:

Athlete biological passport

ADAMS:

Anti-doping administration and management system

ADOs:

Anti-doping organisations

ADRV:

Anti-doping rule violations

APMU:

Athlete Passport Management Unit

GH:

Growth hormone

Hb:

Haemoglobin

NADA:

National Anti-Doping Agency

RBC:

Red blood cells

rh-EPO:

Recombinant human erythropoietin

WADA:

World Anti-Doping Agency

References

  1. WADA. Athlete Biological Passport operating guidelines, June 2019, Version 7.1. https://www.wada-ama.org/sites/default/files/resources/files/guidelines_abp_v71.pdf. Retrieved Dec 13, 2019].

  2. Sottas, P.-E., Robinson, N., Rabin, O., & Saugy, M. (2011). The athlete biological passport. Clinical Chemistry,57(7), 969–976.

    Article  CAS  Google Scholar 

  3. Times of India. NADA begins Athlete Biological Passport programme, first target Olympic-bound athletes, 2019. https://www.timesofindia.indiatimes.com/sports/more-sports/others/nada-begins-athlete-biological-passport-programme-first-target-olympic-bound-athletes/articleshow/72456531.cms Retrieved Dec 20, 2019].

  4. DNA India. NADA announces setting up of Athlete Passport Management Unit, 2017. http://www.dnaindia.com/sports/report-nada-announces-setting-up-of-athlete-passport-management-unit-2443291 Retrieved Dec 20, 2019].

  5. Saugy, M., Lundby, C., & Robinson, N. (2014). Monitoring of biological markers indicative of doping: the athlete biological passport. British Journal of Sports Medicine,48(10), 827–832.

    Article  Google Scholar 

  6. Robinson, N., Sottas, P. E., & Schumacher, Y. O. (2017). The athlete biological passport: How to personalize anti-doping testing across an athlete's career? Medicine and Sport Science,62, 107–118.

    Article  Google Scholar 

  7. Bidlingmaier, M., Suhr, J., Ernst, A., Wu, Z., Keller, A., Strasburger, C. J., et al. (2009). High-sensitivity chemiluminescence immunoassays for detection of growth hormone doping in sports. Clinical Chemistry,55(3), 445–453.

    Article  CAS  Google Scholar 

  8. Schumacher, Y. O., Saugy, M., Pottgiesser, T., & Robinson, N. (2012). Detection of EPO doping and blood doping: The haematological module of the athlete biological passport. Drug Testing and Analysis,4(11), 846–853.

    Article  CAS  Google Scholar 

  9. WADA. Athlete Passport Management Unit Requirements and Procedures, 2019. https://www.wada-ama.org/sites/default/files/resources/files/td2019apmu_final2.pdf Retrieved Dec 14, 2019].

  10. WADA. LIST OF ATHLETE PASSPORT MANAGEMENT UNITS (APMU), 2019. https://www.wada-ama.org/en/resources/athlete-biological-passport/list-of-athlete-passport-management-units-apmu Retrieved Dec 14, 2019].

  11. WADA. Annual Report 2016. https://www.wada-ama.org/sites/default/files/resources/files/wada_annual_report_2016_en.pdf Retrieved Dec 13, 2019].

  12. Zorzoli, M., & Rossi, F. (2010). Implementation of the biological passport: the experience of the International Cycling Union. Drug Testing and Analysis,2(11–12), 542–547.

    Article  CAS  Google Scholar 

  13. Sottas, P.-E., Robinson, N., Saugy, M., & Niggli, O. (2008). A forensic approach to the interpretation of blood doping markers. Law Probability and Risk,7(3), 191–210.

    Article  Google Scholar 

  14. Sanchis-Gomar, F., Pareja-Galeano, H., Brioche, T., Martinez-Bello, V., & Lippi, G. (2014). Altitude exposure in sports: The Athlete Biological Passport standpoint. Drug Testing and Analysis,6(3), 190–193.

    Article  CAS  Google Scholar 

  15. Sanchis-Gomar, F., Martinez-Bello, V. E., Gomez-Cabrera, M. C., & Vina, J. (2011). Current limitations of the Athlete's Biological Passport use in sports. Clinical Chemistry and Laboratory Medicine,49(9), 1413–1415.

    Article  CAS  Google Scholar 

  16. Wozny, M. (2010). The biological passport and doping in athletics. Lancet,376(9735), 79.

    Article  Google Scholar 

  17. Banfi, G., Drago, L., & Lippi, G. (2010). Analytical variability in athletes haematological testing. International Journal of Sports Medicine,31(3), 218.

    Article  CAS  Google Scholar 

  18. Sawka, M. N., Convertino, V. A., Eichner, E. R., Schnieder, S. M., & Young, A. J. (2000). Blood volume: Importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Medicine and Science in Sports and Exercise,32(2), 332–348.

    Article  CAS  Google Scholar 

  19. Schumacher, Y. O., Wenning, M., Robinson, N., Sottas, P. E., Ruecker, G., & Pottgiesser, T. (2010). Diurnal and exercise-related variability of haemoglobin and reticulocytes in athletes. International Journal of Sports Medicine,31(4), 225–230.

    Article  CAS  Google Scholar 

  20. Sottas, P. E., Robinson, N., & Saugy, M. (2010). The athlete's biological passport and indirect markers of blood doping. Handbook of Experimental Pharmacology,195, 305–326.

    Article  CAS  Google Scholar 

  21. Sanchis-Gomar, F., Martinez-Bello, V. E., Domenech, E., Nascimento, A. L., Pallardo, F. V., Gomez-Cabrera, M. C., et al. (2009). Effect of intermittent hypoxia on hematological parameters after recombinant human erythropoietin administration. European Journal of Applied Physiology,107(4), 429–436.

    Article  CAS  Google Scholar 

  22. Sanchis-Gomar, F., Martinez-Bello, V. E., Nascimento, A. L., Perez-Quilis, C., Garcia-Gimenez, J. L., Vina, J., et al. (2010). Desmopresssin and hemodilution: Implications in doping. International Journal of Sports Medicine,31(1), 5–9.

    Article  CAS  Google Scholar 

  23. Rogol, A. D., & Pieper, L. P. (2017). Genes, gender, hormones, and doping in sport: A convoluted tale. Frontiers in Endocrinology,8, 251.

    Article  Google Scholar 

  24. Devriendt, T., Chokoshvili, D., & Borry, P. (2019). The athlete biological passport: Challenges and possibilities. International Journal of Sport Policy and Politics,11(2), 315–324.

    Article  Google Scholar 

  25. Devriendt, T., Chokoshvili, D., Favaretto, M., & Borry, P. (2018). Do athletes have a right to access data in their Athlete Biological Passport? Drug Testing and Analysis,10(5), 802–806.

    Article  CAS  Google Scholar 

  26. Sorensen, E. (2009). Debunking the Myth of Pregnancy Doping. Journal of Intercollegiate Sport,2, 269–285.

    Article  Google Scholar 

  27. Van Renterghem, P., Van Eenoo, P., & Delbeke, F. T. (2010). Population based evaluation of a multi-parametric steroid profiling on administered endogenous steroids in single low dose. Steroids,75(13–14), 1047–1057.

    Article  Google Scholar 

  28. Mullen, J. E., Thorngren, J. O., Schulze, J. J., Ericsson, M., Garevik, N., Lehtihet, M., et al. (2017). Urinary steroid profile in females - the impact of menstrual cycle and emergency contraceptives. Drug Testing and Analysis,9(7), 1034–1042.

    Article  CAS  Google Scholar 

  29. Schulze, J. J., Mullen, J. E., Berglund Lindgren, E., Ericsson, M., Ekström, L., & Hirschberg, A. L. (2014). The impact of genetics and hormonal contraceptives on the steroid profile in female athletes. Frontiers in Endocrinology,5, 50.

    Article  Google Scholar 

  30. Mullen, J., Gadot, Y., Eklund, E., Andersson, A., Schulze, J., Ericsson, M., et al. (2018). Pregnancy greatly affects the steroidal module of the Athlete Biological Passport. Drug Testing and Analysis., 10(7), 1070–1075.

    Article  CAS  Google Scholar 

Download references

Funding

No funding has been obtained for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Medhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendru, D., Kumaravel, J., Mahalmani, V.M. et al. Athlete Biological Passport: Need and Challenges. JOIO 54, 264–270 (2020). https://doi.org/10.1007/s43465-020-00040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-020-00040-7

Keywords

Navigation