Skip to main content

Advertisement

Log in

Effect of intermittent hypoxia on hematological parameters after recombinant human erythropoietin administration

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Recent publications reflect the anti-doping authorities’ concern about the use of altitude simulator systems as violating the spirit of sport criterion (Levine 2006; Loland and Murray 2007; Spriggs 2005). The aim of our study was to determine whether intermittent hypoxic treatments could modify the hemoglobin, hematocrit, reticulocytes, and erythropoietic stimulation index (OFF-Hr Score) values after administration of rHuEPO-alpha. Although these hematological parameters are of secondary nature some international sport federations currently exclude athletes who show aberrant values of these parameters from competition. Ten young male Wistar rats were treated, three times a week for 2 weeks, with 500 IU of rHuEPO-alpha. After the treatment, the animals were randomly divided into two groups: normoxic and hypoxic. The normoxic group was maintained at 21% O2 24 h a day for 23 days. The hypoxic group was maintained 12 h at 21% O2 and 12 h at 12% O2 (~4,000 m) the same time period. After the rHuEPO-alpha treatment, the hypoxic group of animals had a faster recovery rate in the reticulocyte count, elevated concentrations of hemoglobin and hematocrit and a significant increase in the endogenous EPO levels when compared with the normoxic group of animals. These changes led to significant modifications in the OFF-Hr Score between the hypoxic and normoxic animals. Intermittent hypoxic treatments after rHuEPO administration can significantly modify the main hematological parameters tested by the anti-doping authorities. Our results in an animal model suggest checking the described phenomena in humans in order to reach major conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbrecht PH, Littell JK (1972) Plasma erythropoietin in men and mice during acclimatization to different altitudes. J Appl Physiol 32:54–58

    PubMed  CAS  Google Scholar 

  • Beullens M, Delanghe JR, Bollen M (2006) False-positive detection of recombinant human erythropoietin in urine following strenuous physical exercise. Blood 107:4711–4713

    Article  PubMed  CAS  Google Scholar 

  • Bonetti DL, Hopkins WG, Kilding AE (2006) High-intensity kayak performance after adaptation to intermittent hypoxia. Int J Sports Physiol Perform 1:246–260

    PubMed  Google Scholar 

  • Calbet JA, Lundby C, Koskolou M, Boushel R (2006) Importance of hemoglobin concentration to exercise: acute manipulations. Respir Physiol Neurobiol 151:132–140

    Article  PubMed  CAS  Google Scholar 

  • Damsgaard R, Munch T, Morkeberg J, Mortensen SP, Gonzalez-Alonso J (2006) Effects of blood withdrawal and reinfusion on biomarkers of erythropoiesis in humans: Implications for anti-doping strategies. Haematologica 91:1006–1008

    PubMed  Google Scholar 

  • Delanghe JR, Bollen M, Beullens M (2008) Testing for recombinant erythropoietin. Am J Hematol 83:237–241

    Article  PubMed  CAS  Google Scholar 

  • Ebert BL, Bunn HF (1999) Regulation of the erythropoietin gene. Blood 94:1864–1877

    PubMed  CAS  Google Scholar 

  • Gonzalez NC, Clancy RL, Wagner PD (1993) Determinants of maximal oxygen uptake in rats acclimated to simulated altitude. J Appl Physiol 75:1608–1614

    PubMed  CAS  Google Scholar 

  • Gonzalez NC, Erwig LP, Painter CF 3rd, Clancy RL, Wagner PD (1994) Effect of hematocrit on systemic O2 transport in hypoxic and normoxic exercise in rats. J Appl Physiol 77:1341–1348

    PubMed  CAS  Google Scholar 

  • Gore CJ, Parisotto R, Ashenden MJ, Stray-Gundersen J, Sharpe K, Hopkins W, Emslie KR, Howe C, Trout GJ, Kazlauskas R, Hahn AG (2003) Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 88:333–344

    PubMed  Google Scholar 

  • Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, Hahn AG, Parisotto R, Levine BD (2004) Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 96:1800–1807

    Article  PubMed  CAS  Google Scholar 

  • Laitinen H, Alopaeus K, Heikkinen R, Hietanen H, Mikkelsson L, Tikkanen HO, Rusko HK (1995) Acclimatization to living in normobaric hypoxia and training in normoxia at sea level in runners (Abstract). Med Sci Sports Exerc 27:S617

    Google Scholar 

  • Lasne F, de Ceaurriz J (2000) Recombinant erythropoietin in urine. Nature 405:635

    Article  PubMed  CAS  Google Scholar 

  • Lasne F, Martin L, Crepin N, de Ceaurriz J (2002) Detection of isoelectric profiles of erythropoietin in urine: differentiation of natural and administered recombinant hormones. Anal Biochem 311:119–126

    Article  PubMed  CAS  Google Scholar 

  • Levine BD (2006) Should “artificial” high altitude environments be considered doping? Scand J Med Sci Sports 16:297–301

    Article  PubMed  Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112

    PubMed  CAS  Google Scholar 

  • Levine BD, Stray-Gundersen J (2005) Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol 99:2053–2055

    Article  PubMed  Google Scholar 

  • Lippi G, Franchini M, Guidi GC (2007) Prohibition of artificial hypoxic environments in sports: health risks rather than ethics. Appl Physiol Nutr Metab 32:1206–1207 discussion 1208–1209

    Article  PubMed  Google Scholar 

  • Loland S, Murray TH (2007) The ethics of the use of technologically constructed high-altitude environments to enhance performances in sport. Scand J Med Sci Sports 17:193–195

    Article  PubMed  CAS  Google Scholar 

  • Lundby C, Thomsen JJ, Boushel R, Koskolou M, Warberg J, Calbet JA, Robach P (2007) Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume. J Physiol 578:309–314

    Article  PubMed  CAS  Google Scholar 

  • Lundby C, Achman-Andersen NJ, Thomsen JJ, Norgaard AM, Robach P (2008) Testing for recombinant human erythropoietin in urine: problems associated with current anti-doping testing. J Appl Physiol 105:417–419

    Article  PubMed  CAS  Google Scholar 

  • Malloy DC, Kell R, Kelln R (2007) The spirit of sport, morality, and hypoxic tents: logic and authenticity. Appl Physiol Nutr Metab 32:289–296

    Article  PubMed  Google Scholar 

  • Neya M, Enoki T, Kumai Y, Sugoh T, Kawahara T (2007) The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass. J Appl Physiol 103:828–834

    Article  PubMed  CAS  Google Scholar 

  • Nummela A, Rusko H (2000) Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J Sports Sci 18:411–419

    Article  PubMed  CAS  Google Scholar 

  • Parisotto R, Gore CJ, Emslie KR, Ashenden MJ, Brugnara C, Howe C, Martin DT, Trout GJ, Hahn AG (2000) A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica 85:564–572

    PubMed  CAS  Google Scholar 

  • Parisotto R, Wu M, Ashenden MJ, Emslie KR, Gore CJ, Howe C, Kazlauskas R, Sharpe K, Trout GJ, Xie M (2001) Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica 86:128–137

    PubMed  CAS  Google Scholar 

  • Parisotto R, Ashenden MJ, Gore CJ, Sharpe K, Hopkins W, Hahn AG (2003) The effect of common hematologic abnormalities on the ability of blood models to detect erythropoietin abuse by athletes. Haematologica 88:931–940

    PubMed  Google Scholar 

  • Reboul C, Tanguy S, Dauzat M, Obert P (2005) Altitude negates the benefits of aerobic training on the vascular adaptations in rats. Med Sci Sports Exerc 37:979–985

    PubMed  Google Scholar 

  • Robach P, Calbet JA, Thomsen JJ, Boushel R, Mollard P, Rasmussen P, Lundby C (2008) The ergogenic effect of recombinant human erythropoietin on VO2max depends on the severity of arterial hypoxemia. PLoS ONE 3:e2996

    Article  PubMed  CAS  Google Scholar 

  • Robinson N, Giraud S, Saudan C, Baume N, Avois L, Mangin P, Saugy M (2006) Erythropoietin and blood doping. Br J Sports Med 40(Suppl 1):i30–i34

    Article  PubMed  Google Scholar 

  • Roels B, Millet GP, Marcoux CJ, Coste O, Bentley DJ, Candau RB (2005) Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc 37:138–146

    Article  PubMed  Google Scholar 

  • Rusko HK, Tikkanen H, Paavolainen L, Hamalainen I, Kalliokoski KAP (1999) Effect of living in hypoxia and training in normoxia on sea level VO2 max and red cell mass (Abstract). Med Sci Sports Exerc 31:S86

    Google Scholar 

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  • Sharpe K, Hopkins W, Emslie KR, Howe C, Trout GJ, Kazlauskas R, Ashenden MJ, Gore CJ, Parisotto R, Hahn AG (2002) Development of reference ranges in elite athletes for markers of altered erythropoiesis. Haematologica 87:1248–1257

    PubMed  Google Scholar 

  • Sharpe K, Ashenden MJ, Schumacher YO (2006) A third generation approach to detect erythropoietin abuse in athletes. Haematologica 91:356–363

    PubMed  CAS  Google Scholar 

  • Souillard A, Audran M, Bressolle F, Gareau R, Duvallet A, Chanal JL (1996) Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes. Blood sampling and doping control. Br J Clin Pharmacol 42:355–364

    Article  PubMed  CAS  Google Scholar 

  • Spriggs M (2005) Hypoxic air machines: performance enhancement through effective training—or cheating? J Med Ethics 31:112–113

    Article  PubMed  CAS  Google Scholar 

  • Truijens MJ, Toussaint HM, Dow J, Levine BD (2003) Effect of high-intensity hypoxic training on sea-level swimming performances. J Appl Physiol 94:733–743

    PubMed  CAS  Google Scholar 

  • Wide L, Bengtsson C (1990) Molecular charge heterogeneity of human serum erythropoietin. Br J Haematol 76:121–127

    Article  PubMed  CAS  Google Scholar 

  • Wilber RL (2007a) Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc 39:1610–1624

    Article  PubMed  Google Scholar 

  • Wilber RL (2007b) Introduction to altitude/hypoxic training symposium. Med Sci Sports Exerc 39:1587–1589

    Article  PubMed  Google Scholar 

  • Wilber RL, Stray-Gundersen J, Levine BD (2007) Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc 39:1590–1599

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs Marilyn Noyes for her kind help in reviewing the manuscript and to Mr Daniel Martinez Bello for his help in the Statistical Analysis. The authors’ work was supported by grants DPS2008-06968 and BFU2007-65 803/BFI to J. V.; 24/UPB20/07 and 35/UPB20/08 to M. C. G-C and by grant (ISCIII2006-RED13-027) from the “Red Temática de investigación cooperativa en envejecimiento y fragilidad (RETICEF). Instituto de Salud Carlos III”.

Conflict of interest statement

None of the authors had any conflicts of interest with the funding agencies or professional relationships with companies or manufacturers who may benefit from the results of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchis-Gomar, F., Martinez-Bello, V.E., Domenech, E. et al. Effect of intermittent hypoxia on hematological parameters after recombinant human erythropoietin administration. Eur J Appl Physiol 107, 429–436 (2009). https://doi.org/10.1007/s00421-009-1141-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1141-3

Keywords

Navigation