Skip to main content
Log in

Phase transformation effect on residual stress development in fusion welding of dissimilar stainless steels with different thickness

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The residual stress creates deleterious effects on joint properties of dissimilar welding due to differential thermophysical properties and mechanical constraints of dissimilar thickness. Accounting of solid-state phase transformation (SSPT) through the understanding of solidification behavior enhances the prediction accuracy of residual stress. The characterization of microstructural features improves the fundamental understanding of the residual stress evaluation. An attempt is made to comprehend the dependence of heat input on phase transformation and its effect on the generation of compressive residual stress in dissimilar welding. Three distinct heat inputs of 52, 63, and 77 J/mm are considered in micro-plasma arc welding (µ-PAW) of SS316L and SS310 with thicknesses of 800 µm and 600 µm, respectively. The measurement of residual stress is performed using the X-ray diffraction (XRD) method. The variation of δferrite from 11.2 to 7.9% is analogous to the variation of average δferrite lath size from 412 to 1040 nm, where inter-dendritic spacing varies from ~ 10 µm to ~ 20 µm. The solidification mode is identified as ferritic-austenitic (FA), which results in the formation of skeletal and lathy δferrite structures. Electron Backscatter Diffraction (EBSD) results show an increase in heat input leads to an increase in low-angle grain boundaries that results in a rise in the residual stress value. The phase fraction and residual stresses are computed employing a finite element (FE) based thermal-metallurgical-mechanical (TMM) model including the effect of SSPT. The reasonable agreement between the computed and experimental measurements with a maximum error of ~ 8.5% in weld size, ~ 7.5% in peak temperature, ~ 16% in retained δferrite, ~ 17% in residual stress, and ~ 5% in distortion demonstrates the reliability of the developed model. A lower level of heat input (52 J/mm) allows the formation of a high amount of δferrite, which generates comparatively more compressive stress as a disparity in thermal expansion coefficient \({\mathrm{\alpha }}_{{\text{Ni}}}\sim 1.6 {\mathrm{\alpha }}_{{\text{Cr}}}\) aids in the reduction of residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Banik SD, Kumar S, Singh PK, Bhattacharya S, Mahapatra MM. Distortion and residual stresses in thick plate weld joint of austenitic stainless steel: experiments and analysis. J Mater Process Technol. 2021;289:116944.

    Article  Google Scholar 

  2. Ma C, Peng Q, Mei J, Han E-H, Ke W. Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L–316L weld joint. J Mater Sci Technol. 2018;34:1823–34.

    Article  Google Scholar 

  3. Durgaprasad K, Pal S, Das M. Influence of cusp magnetic field on the evolution of metallurgical and mechanical properties in GTAW of SS 304. Int J Adv Manuf Technol. 2023;126:1–16.

    Article  Google Scholar 

  4. Lin Y-C, Chou CP. A new technique for reducing the residual stress induced by welding in type 304 stainless steel. J Mater Process Technol. 1995;48:693–8.

    Article  Google Scholar 

  5. Haldar V, Pal S. Influence of fusion zone metallurgy on the mechanical behavior of Ni-Based superalloy and austenitic stainless steel dissimilar joint. J Mater Eng Perform. 2023. https://doi.org/10.1007/s11665-023-08335-0.

    Article  Google Scholar 

  6. Kumar, A., Bhattacharyya, A., Pandey, C.: Structural Integrity Assessment of Inconel 617/P92 Steel Dissimilar Welds Produced Using the Shielded Metal Arc Welding Process. J. Mater. Eng. Perform. (2023).

  7. Anawa EM, Olabi A-G. Control of welding residual stress for dissimilar laser welded materials. J Mater Process Technol. 2008;204:22–33.

    Article  Google Scholar 

  8. Kumar R, Mahapatra MM, Pradhan AK, Giri A, Pandey C. Experimental and numerical study on the distribution of temperature field and residual stress in a multi-pass welded tube joint of Inconel 617 alloy. Int J Press Vessels Pip. 2023;206:105034.

    Article  Google Scholar 

  9. Kumar A, Guguloth K, Pandey SM, Fydrych D, Sirohi S, Pandey C. Study on microstructure-property relationship of inconel 617 Alloy/304L SS steel dissimilar welds joint. Metall Mater Trans A. 2023;54:3844–70.

    Article  Google Scholar 

  10. Dawes, C.T.: Laser welding: a practical guide. Woodhead Publishing (1992)

  11. Kumar B, Nagamani Jaya B. Thermal stability and residual stresses in additively manufactured single and multi-material systems. Metall Mater Trans A. 2023;54:1808–24.

    Article  Google Scholar 

  12. Akbari D, Sattari-Far I. Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints. Int J Press Vessels Pip. 2009;86:769–76.

    Article  Google Scholar 

  13. Maurya AK, Chhibber R, Pandey C. Studies on residual stresses and structural integrity of the dissimilar gas tungsten arc welded joint of sDSS 2507/Inconel 625 for marine application. J Mater Sci. 2023;58:8597–634.

    Article  Google Scholar 

  14. Hsieh C-C. Microstructural evolution and examination of α’-martensite during a multi-pass dissimilar stainless steel GTAW process. Met Mater Int. 2008;14:643–8.

    Article  Google Scholar 

  15. Hsieh C-C, Wu W. Phase transformation of δ→σ in multipass heat-affected and fusion zones of dissimilar stainless steels. Met Mater Int. 2011;17:375–81.

    Article  Google Scholar 

  16. Kianersi D, Mostafaei A, Amadeh AA. Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: phase transformations, mechanical properties and microstructure characterizations. Mater Des. 2014;61:251–63.

    Article  Google Scholar 

  17. Harjo S, Tomota Y, Ono M. Measurements of thermal residual elastic strains in ferrite–austenite Fe–Cr–Ni alloys by neutron and X-ray diffractions. Acta Mater. 1998;47:353–62.

    Article  Google Scholar 

  18. Thibault D, Bocher P, Thomas M, Gharghouri M, Côté M. Residual stress characterization in low transformation temperature 13% Cr–4% Ni stainless steel weld by neutron diffraction and the contour method. Mater Sci Eng A. 2010;527:6205–10.

    Article  Google Scholar 

  19. Hsieh CC, Wang PS, Wang JS, Wu W. Evolution of microstructure and residual stress under various vibration modes in 304 stainless steel welds. Sci World J. 2014;2014:1–9.

    Google Scholar 

  20. Chen L, Mi G, Zhang X, Wang C. Numerical and experimental investigation on microstructure and residual stress of multi-pass hybrid laser-arc welded 316L steel. Mater Des. 2019;168:107653.

    Article  Google Scholar 

  21. De A, DebRoy T. A perspective on residual stresses in welding. Sci Technol Weld Join. 2011;16:204–8.

    Article  Google Scholar 

  22. Kesavan Nair P, Vasudevan R. Residual stresses of types II and III and their estimation. Sadhana. 1995;20:39–52.

    Article  Google Scholar 

  23. Olabi, A.G., Hashmi, M.S.J.: Review of methods for measuring residual stresses in components. In: Proceedings of 9th Conf. on Manufacturing Research Sep (1993)

  24. Deng D, Murakawa H. Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel. Comput Mater Sci. 2013;78:55–62.

    Article  Google Scholar 

  25. Feng Z. Processes and mechanisms of welding residual stress and distortion. Woodhead Publishing: Elsevier; 2005.

    Book  Google Scholar 

  26. Lindgren L-E. Numerical modelling of welding. Comput Methods Appl Mech Eng. 2006;195:6710–36.

    Article  Google Scholar 

  27. Deng D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater Des. 2009;30:359–66.

    Article  Google Scholar 

  28. Zubairuddin M, Albert SK, Chaudhari V, Suri VK. Influence of phase transformation on thermo-mechanical analysis of modified 9Cr-1Mo steel. Procedia Mater Sci. 2014;5:832–40.

    Article  Google Scholar 

  29. Hamelin CJ, Muránsky O, Smith MC, Holden TM, Luzin V, Bendeich PJ, Edwards L. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments. Acta Mater. 2014;75:1–19.

    Article  Google Scholar 

  30. Yaghi AH, Hyde TH, Becker AA, Sun W. Finite element simulation of welding and residual stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment. J Strain Anal Eng Des. 2008;43:275–93.

    Article  Google Scholar 

  31. Li S, Hu L, Dai P, Bi T, Deng D. Influence of the groove shape on welding residual stresses in P92/SUS304 dissimilar metal butt-welded joints. J Manuf Process. 2021;66:376–86.

    Article  Google Scholar 

  32. Kumar B, Bag S. Phase transformation effect in distortion and residual stress of thin-sheet laser welded Ti-alloy. Opt Lasers Eng. 2019;122:209–24.

    Article  Google Scholar 

  33. Kumar B, Bag S, Mahadevan S, Paul CP, Das CR, Bindra KS. On the interaction of microstructural morphology with residual stress in fiber laser welding of austenitic stainless steel. CIRP J Manuf Sci Technol. 2021;33:158–75.

    Article  Google Scholar 

  34. Taraphdar PK, Kumar R, Pandey C, Mahapatra MM. Significance of finite element models and solid-state phase transformation on the evaluation of weld induced residual stresseS. Met Mater Int. 2021;27:3478–92.

    Article  Google Scholar 

  35. Kubiak M, Piekarska W. Comprehensive model of thermal phenomena and phase transformations in laser welding process. Comput Struct. 2016;172:29–39.

    Article  Google Scholar 

  36. Mi G, Xiong L, Wang C, Hu X, Wei Y. A thermal-metallurgical-mechanical model for laser welding Q235 steel. J Mater Process Technol. 2016;238:39–48.

    Article  Google Scholar 

  37. Ghafouri M, Ahn J, Mourujärvi J, Björk T, Larkiola J. Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models. Eng Struct. 2020;219:110804.

    Article  Google Scholar 

  38. Shen L, He Y, Liu D, Gong Q, Zhang B, Lei J. A novel method for determining surface residual stress components and their directions in spherical indentation. J Mater Res. 2015;30:1078–89.

    Article  Google Scholar 

  39. Taraphdar PK, Thakare JG, Pandey C, Mahapatra MM. Novel residual stress measurement technique to evaluate through thickness residual stress fields. Mater Lett. 2020;277:128347.

    Article  Google Scholar 

  40. Elata D, Abu-Salih S. Analysis of a novel method for measuring residual stress in micro-systems. J Micromechanics Microengineering. 2005;15:921.

    Article  Google Scholar 

  41. Taraphdar PK, Kumar R, Giri A, Pandey C, Mahapatra MM, Sridhar K. Residual stress distribution in thick double-V butt welds with varying groove configuration, restraints and mechanical tensioning. J Manuf Process. 2021;68:1405–17.

    Article  Google Scholar 

  42. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Effects of groove configuration and buttering layer on the through-thickness residual stress distribution in dissimilar welds. Int J Press Vessels Pip. 2021;192:104392.

    Article  Google Scholar 

  43. Nowacki J, Sajek A, Matkowski P. The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Arch Civ Mech Eng. 2016;16:777–83.

    Article  Google Scholar 

  44. Pandey C, Mahapatra MM, Kumar P. A comparative study of transverse shrinkage stresses and residual stresses in P91 welded pipe including plasticity error. Arch Civ Mech Eng. 2018;18:1000–11.

    Article  Google Scholar 

  45. Saha D, Pal S. Study on the microstructural variation and fatigue performance of microplasma arc welded thin 316L sheet. Proc. Inst. Mech Eng Part J Mater Des Appl. 2022;236:880–90.

    Google Scholar 

  46. Dwibedi S, Bag S. Development of micro-plasma arc welding system for different thickness dissimilar austenitic stainless steels. J Inst Eng India Ser C. 2021;102:657–71.

    Article  Google Scholar 

  47. Mousavi SA, Miresmaeili R. Experimental and numerical analyses of residual stress distributions in TIG welding process for 304L stainless steel. J Mater Process Technol. 2008;208:383–94.

    Article  Google Scholar 

  48. Kohli D, Rakesh R, Sinha VP, Prasad GJ, Samajdar I. Fabrication of simulated plate fuel elements: defining role of stress relief annealing. J Nucl Mater. 2014;447:150–9.

    Article  Google Scholar 

  49. Dwibedi S, Bag S. Influence of process parameters on microstructural evolution, solidification mode and impact strength in joining of stainless steel thin sheets. Adv Mater Process Technol. 2021;8(sup3):1089–104.

    Google Scholar 

  50. Lippold, J.C., Kotecki, D.J.: Welding metallurgy and weldability of stainless steels. (2005)

  51. Avrami M. Transformation-time relations for random distribution of nuclei kinetics of phase change II. J Chem Phys. 1940;8:212.

    Article  Google Scholar 

  52. Feujofack Kemda BV, Barka N, Jahazi M, Osmani D. Modeling of phase transformation kinetics in resistance spot welding and investigation of effect of post weld heat treatment on weld microstructure. Met Mater Int. 2021;27:1205–23.

    Article  Google Scholar 

  53. Kumar B, Bag S, Paul CP, Das CR, Ravikumar R, Bindra KS. Influence of the mode of laser welding parameters on microstructural morphology in thin sheet Ti6Al4V alloy. Opt Laser Technol. 2020;131:106456.

    Article  Google Scholar 

  54. Ahn J, He E, Chen L, Wimpory RC, Dear JP, Davies CM. Prediction and measurement of residual stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation. Mater Des. 2017;115:441–57.

    Article  Google Scholar 

  55. Li Z, Feng G, Deng D, Luo Y. Investigating welding distortion of thin-plate stiffened panel steel structures by means of thermal elastic plastic finite element method. J Mater Eng Perform. 2021;30:3677–90.

    Article  Google Scholar 

  56. Sun J, Liu X, Tong Y, Deng D. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Mater Des. 2014;63:519–30.

    Article  Google Scholar 

  57. Onink M, Brakman CM, Tichelaar FD, Mittemeijer EJ, Van der Zwaag S, Root JH, Konyer NB. The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature. Scr Metall Mater States. 1993;29:1011.

    Article  Google Scholar 

  58. Saida K, Nishijima Y, Ogiwara H, Nishimoto K. Prediction of solidification cracking in laser welds of type 310 stainless steels. Weld Int. 2015;29:577–86.

    Article  Google Scholar 

  59. Rong Y, Huang Y, Xu J, Zheng H, Zhang G. Numerical simulation and experiment analysis of angular distortion and residual stress in hybrid laser-magnetic welding. J Mater Process Technol. 2017;245:270–7.

    Article  Google Scholar 

  60. Standard, A.: E230/E230M- 12. Stand. Specif. Temp.-Electromotive Force Emf Tables Stand. Thermocouples ASTM Int. West Conshohocken Pa. (2012)

  61. Lee Y, Nordin M, Babu SS, Farson DF. Effect of fluid convection on dendrite arm spacing in laser deposition. Metall Mater Trans B. 2014;45:1520–9.

    Article  Google Scholar 

  62. Ragavendran M, Vasudevan M. Laser and hybrid laser welding of type 316L (N) austenitic stainless steel plates. Mater Manuf Processes. 2020;35:922–34.

    Article  Google Scholar 

  63. Kumar S, Shahi AS. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater Des. 2011;32:3617–23.

    Article  Google Scholar 

  64. Yan S, Shi Y, Liu J, Ni C. Effect of laser mode on microstructure and corrosion resistance of 316L stainless steel weld joint. Opt Laser Technol. 2019;113:428–36.

    Article  Google Scholar 

  65. Astm: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. Practice. 1–7 (2011)

  66. Bansal A, Sharma AK, Das S, Kumar P. On microstructure and strength properties of microwave welded Inconel 718/stainless steel (SS-316L). Proc. Inst. Mech Eng Part J Mater Des Appl. 2016;230:939–48.

    Google Scholar 

  67. Saranarayanan R, Lakshminarayanan AK, Venkatraman B. A combined full-field imaging and metallography approach to assess the local properties of gas tungsten arc welded copper—stainless steel joints. Arch Civ Mech Eng. 2019;19:251–67.

    Article  Google Scholar 

  68. Jiang Z, Tao W, Yu K, Tan C, Chen Y, Li L, Li Z. Comparative study on fiber laser welding of GH3535 superalloy in continuous and pulsed waves. Mater Des. 2016;110:728–39.

    Article  Google Scholar 

  69. Jiang Z, Chen X, Li H, Lei Z, Chen Y, Wu S, Wang Y. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Mater Des. 2020;186:108195.

    Article  Google Scholar 

  70. Zhang H, Xu M, Liu Z, Li C, Kumar P, Liu Z, Zhang Y. Microstructure, surface quality, residual stress, fatigue behavior and damage mechanisms of selective laser melted 304L stainless steel considering building direction. Addit Manuf. 2021;46:102147.

    Google Scholar 

  71. Zhang H, Xu M, Kumar P, Li C, Dai W, Liu Z, Li Z, Zhang Y. Enhancement of fatigue resistance of additively manufactured 304L SS by unique heterogeneous microstructure. Virtual Phys Prototyp. 2021;16:125–45.

    Article  Google Scholar 

  72. Baruah M, Bag S. Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy. Opt Laser Technol. 2017;90:40–51.

    Article  Google Scholar 

  73. Ishigami A, Roy MJ, Walsh JN, Withers PJ. The effect of the weld fusion zone shape on residual stress in submerged arc welding. Int J Adv Manuf Technol. 2017;90:3451–64.

    Article  Google Scholar 

  74. Karunaratne MSA, Kyaw S, Jones A, Morrell R, Thomson RC. Modelling the coefficient of thermal expansion in Ni-based superalloys and bond coatings. J Mater Sci. 2016;51:4213–26.

    Article  Google Scholar 

  75. Hosseini HS, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater Charact. 2011;62:425–31.

    Article  Google Scholar 

  76. Kumar C, Das M. Exploration of parametric effect on fiber laser weldments of SS-316L by response surface method. J Mater Eng Perform. 2021;30:4583–603.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the NECBH and DBT (IIT Guwahati), Govt. of India, for the project no. BT/COE/34/SP28408/2018 for the FESEM instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Bag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwibedi, S., Kumar, B. & Bag, S. Phase transformation effect on residual stress development in fusion welding of dissimilar stainless steels with different thickness. Arch. Civ. Mech. Eng. 24, 148 (2024). https://doi.org/10.1007/s43452-024-00958-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00958-x

Keywords

Navigation