Skip to main content
Log in

Higher-order displacement, strain, and stress analyses of origami graphene auxetic metamaterial-reinforced cylindrical shell

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this new work, we will investigate the application of a higher-order shear deformable model for elastostatic higher-order displacement, strain, and stress analyses of a shear deformable cylindrical shell. The composite structure is assumed to be composed of a Cu-based matrix reinforced with foldable nanographene, in a thermal environment. The cylindrical shell is reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads. The constitutive relations are extended in thermal environment using three-dimensional Hooke's law where using the mathematical and statistical approach, the effective materials characteristics are experimentally derived as some modification coefficients of foldability, content of reinforcement, and thermal load. The principle of virtual work is used to derive governing equations taking thermal loading into consideration. One can arrive at a parametric analysis and a numerical result investigation through employing an analytical approach to explore elastostatic displacement/strain/stress along the radial coordinate with changes of thermal loads, folding, content characteristics, and other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Furjan MSH, Hatami A, Habibi M, Shan L, Tounsi A. On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Compos Struct. 2021;257: 113150.

    Article  Google Scholar 

  2. Kholdi M, Saeedi S, Zargar Moradi SA, et al. A successive approximation method for thermo-elasto-plastic analysis of a reinforced functionally graded rotating disc. Arch Civ Mech Eng. 2022;22:2.

    Article  Google Scholar 

  3. Saeedi S, Kholdi M, Loghman A, et al. Axisymmetric thermoelastic analysis of long cylinder made of FGM reinforced by aluminum and silicone carbide using DQM. Arch Civ Mech Eng. 2022;22:48.

    Article  Google Scholar 

  4. Chen F, Chen J, Duan R, Habibi M, Khadimallah MA. Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle. Compos Struct. 2022;284: 115195.

    Article  Google Scholar 

  5. Al-Furjan MSH, Oyarhossein MA, Habibi M, Safarpour H, Jung DW, Tounsi A. On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel. Compos Struct. 2021;255:112947.

    Article  Google Scholar 

  6. Yang Y, Lin B, Zhang W. Experimental and numerical investigation of an arch–beam joint for an arch bridge. Arch Civ Mech Eng. 2023;23(2):101.

    Article  Google Scholar 

  7. Dai Z, Zhang L, Bolandi SY, Habibi M. On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses. Compos Struct. 2021;263: 113599.

    Article  Google Scholar 

  8. Arefi M. Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells. Mech Based Des Struct Mach. 2021;49(6):781–810.

    Article  Google Scholar 

  9. Wang Y, Sun S, Luo J, et al. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst Nanoeng. 2020;6:32.

    Article  Google Scholar 

  10. Araki K, Zhang RZ. Plasmon-resonance emission tailoring of “origami” graphene-covered photonic gratings. Opt Express. 2020;28(15):22791–802.

    Article  Google Scholar 

  11. Yellowhorse A, Howell LL. Deployable lenticular stiffeners for origami-inspired mechanisms. Mech Based Des Struct Mach. 2018;46(5):634–49.

    Article  Google Scholar 

  12. Ning X, Wang X, Zhang Y, Yu X, Choi D, Zheng N, Kim DS, Huang Y, Zhang Y, Rogers JA. Assembly of advanced materials into 3D functional structures by methods inspired by Origami and Kirigami: a review. Adv Mater Interfaces. 2018;5(13):1800284.

    Article  Google Scholar 

  13. Adetayo A, Runsewe D. Synthesis and fabrication of graphene and graphene oxide: a review. Open J Compos Mater. 2019;9:207–29.

    Google Scholar 

  14. Sharma H, Upadhyay SH. Geometric design and deployment behavior of origami inspired conical structures. Mech Based Des Struct Mach. 2023;51(1):113–37.

    Article  Google Scholar 

  15. Lin F, Xiang Y, Shen H-S. Tunable positive/negative Young’s modulus in graphene-based metamaterials. Adv Theory Sim. 2021;4(2):2000130.

    Article  Google Scholar 

  16. Ho DT, Park HS, Kim SY, Schwingenschlögl U. Graphene origami with highly tunable coefficient of thermal expansion. ACS Nano. 2020;14(7):8969–74.

    Article  Google Scholar 

  17. Chen H, Zhang Y-Y, Bao D-L, Que Y, Xiao W, Du S, Ouyang M, Pantelides ST, Gao H-J. Atomically precise, custom-design origami graphene nanostructures. Science. 2019;365(6457):1036–40.

    Article  Google Scholar 

  18. Zhang W, Zhang Y, Zhao S, Zhang Y, Yang J. Ballistic impact induced wave propagation and dislocation of three-dimensional graphene origami/copper nanocomposites. Compos Commun. 2024;45: 101790.

    Article  Google Scholar 

  19. Jiang T, Han Q, Li C. Design and bandgap optimization of multi-scale composite origami-inspired metamaterials. Int J Mech Sci. 2023;248: 108233.

    Article  Google Scholar 

  20. Cranford S, Sen D, Buehler MJ. Meso-origami: folding multilayer graphene sheets. Appl Phys Lett. 2009;95: 123121.

    Article  Google Scholar 

  21. Xu L, Shyu TC, Kotov NA. Origami and kirigami nanocomposites. ACS Nano. 2017;11(8):7587–99.

    Article  Google Scholar 

  22. Yang H, Yeow BS, Chang T-H, Li K, Fu F, Ren H, Chen P-Y. Graphene oxide-enabled synthesis of metal oxide origamis for soft robotics. ACS Nano. 2019;13(5):5410–20.

    Article  Google Scholar 

  23. Zhang H, Ma J, Zhang Y, Yang J. Failure mechanism of graphene kirigami under nanoindentation. Nanotechnology. 2022;33: 375703.

    Article  Google Scholar 

  24. Sun Y, et al. Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature. Adv Compos Hybrid Mater. 2022;5(3):1951–65.

    Article  Google Scholar 

  25. Quan TQ, Anh VM, Mahesh V, Duc ND. Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate. Mech Adv Mater Struct. 2022;29(1):127–37.

    Article  Google Scholar 

  26. Shi X, Yang Y, Zhu X, Huang Z. Stochastic dynamics analysis of the rocket shell coupling system with circular plate fasteners based on spectro-geometric method. Compos Struct. 2024;329: 117727.

    Article  Google Scholar 

  27. Azrar L, Belouettar S, Wauer J. Nonlinear vibration analysis of actively loaded sandwich piezoelectric beams with geometric imperfections. Comput Struct. 2008;86(23–24):2182–91.

    Article  Google Scholar 

  28. Bai B, Chen J, Bai F, Nie Q, Jia X. Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues. Env Tech & Innov. 2024;33: 103485.

    Article  Google Scholar 

  29. Foong SY, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J. 2020;389: 124401.

    Article  Google Scholar 

  30. Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech Based Des Struct Mach. 2021;49(1):81–102.

    Article  Google Scholar 

  31. Liang F, Wang R, Pang Q, Hu Z. Design and optimization of press slider with steel-aluminum composite bionic sandwich structure for energy saving. J Clean Prod. 2023;428: 139341.

    Article  Google Scholar 

  32. Abdul-Majeed WR, Jweeg MJ, Jameel AN. Thermal buckling of rectangular plates with different temperature distribution using strain energy method. J Eng. 2011;17(5):1047–65.

    Article  Google Scholar 

  33. Fan W, et al. An antisweat interference and highly sensitive temperature sensor based on poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano. 2023;17(21):21073–82.

    Article  Google Scholar 

  34. Fan W, et al. MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Let. 2024;16(1):36.

    Article  Google Scholar 

  35. Jin Q, Zuo Q. Dynamic analysis of graphene-reinforced sandwich plates with piezoelectric macro fiber composite face sheets. Mech Based Des Struct Mach. 2023. https://doi.org/10.1080/15397734.2023.2185631.

    Article  Google Scholar 

  36. Yang L, Ye M, Huang Y, Dong J. Study on mechanical properties of displacement-amplified mild steel bar joint damper. Iran J Sci Technol Trans Civ Eng. 2023. https://doi.org/10.1007/s40996-023-01268-7.

    Article  Google Scholar 

  37. Zhao S, Zhang Y, Zhang Y, Yang J, Kitipornchai S. A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami. Thin Walled Struct. 2022;181:109997.

    Article  Google Scholar 

  38. Arefi M, Rahimi GH. Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder. Smart Struct Syst. 2014;13(1):1–24. https://doi.org/10.12989/sss.2014.13.1.001.

    Article  Google Scholar 

  39. Jabbari M, Sohrabpour S, Eslami MR. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessel Pip. 2002;79(7):493–7.

    Article  Google Scholar 

  40. Arefi M, Zenkour AM. Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam. J Sandw Struct Mater. 2019;21(4):1243–1270. https://doi.org/10.1177/1099636217714181.

    Article  Google Scholar 

  41. Cui W, Zhao L, Ge Y. Wind-induced buffeting vibration of long-span bridge considering geometric and aerodynamic nonlinearity based on reduced-order modeling. J Struct Eng. 2023;149(11):4023160.

    Article  Google Scholar 

  42. Bidgoli EM-R, Arefi M. Effect of porosity and characteristics of carbon nanotube on the nonlinear characteristics of a simply-supported sandwich plate. Arch Civ Mech Eng. 2023;23:214. https://doi.org/10.1007/s43452-023-00752-1.

    Article  Google Scholar 

  43. Zahedan N, Ahmadi H, Liaghat G. Experimental and numerical investigation on the multi-optimization of reinforcing the side members of the vehicle structure. Arch Civ Mech Eng. 2022;22:25. https://doi.org/10.1007/s43452-021-00351-y.

    Article  Google Scholar 

  44. Jamil AN, Hussien RM. Vibration analysis of angle-ply laminates composite plate under thermo-mechanical effect. J Eng. 2015;21(11):1–23.

    Article  Google Scholar 

  45. Mohammad-Rezaei Bidgoli E, Arefi M. Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nanoplatelet-reinforced face-sheets. Arch Civ Mech Eng. 2023;23:56.

    Article  Google Scholar 

  46. Li J, Wang Z, Zhang S, Lin Y, Wang L, Sun C, Tan J. A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel. Int J Adv Manuf Technol. 2023;124(11):4615–37.

    Google Scholar 

  47. Wang C, Wang Z, Zhang S, Liu X, Tan J. Reinforced quantum-behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable-diameter-die-formed metal bent tubes. J Comput Des Eng. 2023;10(3):1060–79.

    Google Scholar 

  48. Gan J, Li F, Li K, Li E, Li B. Dynamic failure of 3D printed negative-stiffness meta-sandwich structures under repeated impact loadings. Compos Sci Technol. 2023;234: 109928.

    Article  Google Scholar 

  49. Yang S, Zhang Y, Sha Z, Huang Z, Wang H, Wang F, Li J. Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components. ACS Appl Mater Interfaces. 2022;14(34):39354–63. https://doi.org/10.1021/acsami.2c09602.

    Article  Google Scholar 

  50. Lu Z, Zhao L, Ding H, Chen L. A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J Sound Vib. 2021;509: 116251.

    Article  Google Scholar 

  51. Hao R, Lu Z, Ding H, Chen L. Shock isolation of an orthogonal six-DOFs platform with high-static-low-dynamic stiffness. J Appl Mech. 2023;90(11): 111004.

    Article  Google Scholar 

  52. Luo Y, Liu X, Chen F, Zhang H, Xiao X. Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck. Metals. 2023;13(8):1402. https://doi.org/10.3390/met13081402.

    Article  Google Scholar 

  53. Chen F, Zhang H, Li Z, Luo Y, Xiao X, Liu Y. Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks. Adv Struct Eng. 2023;27(1):35–50.

    Article  Google Scholar 

  54. Zhao Y, Liu K, Zhang H, Tian X, Jiang Q, Murugadoss V, Hou H. Dislocation motion in plastic deformation of nano polycrystalline metal materials: a phase field crystal method study. Adv Compos Hybrid Mater. 2022;5(3):2546–56.

    Article  Google Scholar 

  55. Zhang X, Tang Y, Zhang F, Lee C. A novel aluminum-graphite dual-ion battery. Adv Energy Mater. 2016;6(11):1502588.

    Article  Google Scholar 

  56. Ren Z, Zeng H, Zeng X, Chen X, Wang X. Effect of nanographite conductive concrete mixed with magnetite sand excited by different alkali activators and their combinations on the properties of conductive concrete. Buildings. 2023;13(7):1630.

    Article  Google Scholar 

  57. Huang X, Chang L, Zhao H, Cai Z. Study on craniocerebral dynamics response and helmet protective performance under the blast waves. Mater Des. 2022;224: 111408.

    Article  Google Scholar 

  58. Zhang X, Hao H, Tian R, Xue Q, Guan H, Yang X. Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption. Compos Struct. 2022;288: 115399.

    Article  Google Scholar 

  59. Fu ZH, Yang BJ, Shan ML, Li T, Zhu ZY, Ma CP, Gao W. Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros Sci. 2020;164: 108337.

    Article  Google Scholar 

  60. Wang C, Guo L, Xia Y, Zhang C, Sang X, Xu C, Zhang X. Flexural performance and damage evolution of multiple fiberglass-reinforced UV-CIPP composite materials—a view from mechanics and energy release. J Mater Res Technol. 2024;29:3317–39.

    Article  Google Scholar 

  61. Guo H, Zhang J. Expansion of sandwich tubes with metal foam core under axial compression. J Appl Mech. 2023. https://doi.org/10.1115/1.4056686.

    Article  Google Scholar 

  62. Tian R, Guan H, Lu X, Zhang X, Hao H, Feng W, Zhang G. Dynamic crushing behavior and energy absorption of hybrid auxetic metamaterial inspired by Islamic motif art. Appl Math Mech Eng Ed. 2023;44(3):345–62.

    Article  MathSciNet  Google Scholar 

  63. Zhu Q, Chen J, Gou G, Chen H, Li P. Ameliorated longitudinal critically refracted—attenuation velocity method for welding residual stress measurement. J Mater Proc Technol. 2017;246:267–75.

    Article  Google Scholar 

  64. Majeed WI, Al-Samarraie SA, Al-Saior MM. Vibration control analysis of a smart flexible cantilever beam using smart material. J Eng. 2013;19(01):82–95.

    Article  Google Scholar 

  65. Wasmi HR, Sadiq IA, Lafta MA. Non-linear analysis of laminated composite plates under general out-of-plane loading. J Eng. 2015;21(02):119–43.

    Article  Google Scholar 

  66. Mohammed HAU-Q, Wasmi HR. Active vibration control of cantilever beam by using optimal LQR controller. J Eng. 2018;24(11):1–17.

    Article  Google Scholar 

  67. Hasan HM, Swadi MJ. Effect of thickness variable on the bending analysis of rotating functionally polymer graded carbon nanotube reinforced cylindrical panels. J Eng. 2019;25(4):155–72.

    Article  Google Scholar 

  68. Ibrahim WM, Ghani RA. Free vibration analysis of laminated composite plates with general elastic boundary supports. J Eng. 2017;23(4):100–24.

    Article  Google Scholar 

  69. Yue X, et al. Mitigation of indoor air pollution: a review of recent advances in adsorption materials and catalytic oxidation. J Hazard Mater. 2021;405: 124138.

    Article  Google Scholar 

  70. Lam SS, et al. Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J Hazard Mater. 2020;390: 121649.

    Article  Google Scholar 

  71. Wang C, et al. A sustainable strategy to transform cotton waste into renewable cellulose fiber self-reinforcing composite paper. J Clean Prod. 2023;429: 139567.

    Article  Google Scholar 

  72. Zhang Y, et al. A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem Eng J. 2023;471: 144679.

    Article  Google Scholar 

  73. Ge S, et al. Vacuum pyrolysis incorporating microwave heating and base mixture modification: an integrated approach to transform biowaste into eco-friendly bioenergy products. Renew Sustain Energy Rev. 2020;127: 109871.

    Article  Google Scholar 

  74. Alabas MB, Majid WI. Thermal buckling analysis of laminated composite plates with general elastic boundary supports. J Eng. 2020;26(3):1–17.

    Article  Google Scholar 

  75. Bai B, Xu T, Nie Q, Li P. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int J Heat Mass Transf. 2020;153: 119573.

    Article  Google Scholar 

  76. Bai B, Bai F, Nie Q, Jia X. A high-strength red mud–fly ash geopolymer and the implications of curing temperature. Powder Technol. 2023;416: 118242.

    Article  Google Scholar 

  77. Bai B, Wang J, Zhai Z, Xu T. The penetration processes of red mud filtrate in a porous medium by seepage. Transp Porous Med. 2017;117:207–27.

    Article  MathSciNet  Google Scholar 

  78. Peng W, Lam SS, Sonne C. Support Austria’s glyphosate ban. Science. 2020;367(6475):257–8.

    Article  Google Scholar 

  79. Bai B, Bai F, Li X, Nie Q, Jia X, Wu H. The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste. Environ Technol Innov. 2022;28:102.

    Article  Google Scholar 

  80. Ge S, et al. Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater Interfaces. 2020;12(27):30824–32.

    Article  Google Scholar 

  81. Hasan HM. Thermo elastic analysis of carbon nanotube-reinforced composite cylinder utilizing finite element method with the theory of elasticity. J Eng. 2017;23(8):29–45.

    Article  Google Scholar 

  82. Arefi M, Najafitabar F. Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method. Thin Walled Struct. 2021;158: 107200.

    Article  Google Scholar 

  83. Arefi M, Moghaddam SK, Bidgoli EMR, Kiani M, Civalek O. Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads. Compos Struct. 2021;255(1):112924.

    Article  Google Scholar 

  84. Adab N, Arefi M, Amabili M. A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets. Compos Struct. 2022;279: 114761.

    Article  Google Scholar 

  85. Mohammadi M, Arefi M, Dimitri R, Tornabene F. Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation. Nanomaterials. 2019;9(1):79.

    Article  Google Scholar 

  86. Lori Dehsaraji M, Arefi M, Loghman A. Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect. Defence Technol. 2021;17(1):119–34.

    Article  Google Scholar 

  87. Sadiq IA, Majeed W. Thermal buckling of angle-ply laminated plates using new displacement function. J Eng. 2019;25(12):96–113.

    Article  Google Scholar 

  88. Zhou R, Bai B, Cai G, Chen X. Thermo-Hydro-Mechanic-Chemical coupling model for hydrate-bearing sediment within a unified granular thermodynamic theory. Comput Geotech. 2024;167: 106057.

    Article  Google Scholar 

  89. Arefi M, Allam MNM. Nonlinear responses of an arbitrary FGP circular plate resting on foundation. Smart Struct Syst. 201;16(1):81–100. https://doi.org/10.12989/sss.2015.16.1.081.

    Article  Google Scholar 

  90. Arefi M, Rahimi GH. The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped–clamped FG cylinder under mechanical and thermal loads. Int J Pres Ves Piping. 2012;96–97:30–37. https://doi.org/10.1016/j.ijpvp.2012.05.009.

    Article  Google Scholar 

  91. Arefi M, Mohammad-Rezaei Bidgoli E, Dimitri R, Bacciocchi M, Tornabene F. Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate. Compos Part B: Eng. 2018;151:35–50. https://doi.org/10.1016/j.compositesb.2018.05.050.

    Article  Google Scholar 

Download references

Funding

This study was funded by X (4025278/028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thaier J. Ntayeesh or Mohammad Arefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\left\{{\mathcal{F}}_{1},{\mathcal{F}}_{2},{\mathcal{F}}_{3},{\mathcal{F}}_{4}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \left(1-\nu \right)\left(R+z\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{5},{\mathcal{F}}_{6},{\mathcal{F}}_{7},{\mathcal{F}}_{8}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu \left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{9},{\mathcal{F}}_{10},{\mathcal{F}}_{11}\right\}={\int }_{-h/2}^{h/2}\lambda \nu \left(R+z\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{12},{\mathcal{F}}_{13},{\mathcal{F}}_{14}\right\}={\int }_{-h/2}^{h/2}\lambda \left(1-\nu \right)\left(R+z\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{15},{\mathcal{F}}_{16},{\mathcal{F}}_{17},{\mathcal{F}}_{18}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu \left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{19},{\mathcal{F}}_{20},{\mathcal{F}}_{21},{\mathcal{F}}_{22}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu \left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{23},{\mathcal{F}}_{24},{\mathcal{F}}_{25}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \frac{\left(1-2\nu \right)}{2}\left(R+{{z}}\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{26},{\mathcal{F}}_{27},{\mathcal{F}}_{28},{\mathcal{F}}_{29}\right\}={\int }_{-h/2}^{h/2}\lambda \frac{\left(1-2\nu \right)}{2}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{30},{\mathcal{F}}_{31},{\mathcal{F}}_{32},{\mathcal{F}}_{33}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \left(1-\nu \right){{z}}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{34},{\mathcal{F}}_{35},{\mathcal{F}}_{36},{\mathcal{F}}_{37}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{z}}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{38},{\mathcal{F}}_{39},{\mathcal{F}}_{40}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{z}}\left(R+{{z}}\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{41},{\mathcal{F}}_{42},{\mathcal{F}}_{43}\right\}={\int }_{-h/2}^{h/2}\lambda \left(1-\nu \right){{z}}\left(R+{{z}}\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{44},{\mathcal{F}}_{45},{\mathcal{F}}_{46},{\mathcal{F}}_{47}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{z}}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{48},{\mathcal{F}}_{49},{\mathcal{F}}_{50},{\mathcal{F}}_{51}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu z\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{52},{\mathcal{F}}_{53},{\mathcal{F}}_{54}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \frac{\left(1-2\nu \right)}{2}{{z}}\left(R+{{z}}\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{55},{\mathcal{F}}_{56},{\mathcal{F}}_{57},{\mathcal{F}}_{58}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \frac{\left(1-2\nu \right)}{2}{{z}}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{59},{\mathcal{F}}_{60},{\mathcal{F}}_{61},{\mathcal{F}}_{62}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \left(1-\nu \right){{{z}}}^{2}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{63},{\mathcal{F}}_{64},{\mathcal{F}}_{65},{\mathcal{F}}_{66}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {z}^{2}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{67},{\mathcal{F}}_{68},{\mathcal{F}}_{69}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{{z}}}^{2}\left(R+{{z}}\right)\left\{\mathrm{1,2}z,3{z}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{70},{\mathcal{F}}_{71},{\mathcal{F}}_{72}\right\}={\int }_{-h/2}^{h/2}\lambda \left(1-\nu \right){z}^{2}\left(R+z\right)\left\{\mathrm{1,2}z,3{z}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{73},{\mathcal{F}}_{74},{\mathcal{F}}_{75},{\mathcal{F}}_{76}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{{z}}}^{2}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{77},{\mathcal{F}}_{78},{\mathcal{F}}_{79},{\mathcal{F}}_{80}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{{z}}}^{2}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{81},{\mathcal{F}}_{82},{\mathcal{F}}_{83}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \frac{\left(1-2\nu \right)}{2}{{{z}}}^{2}\left(R+{{z}}\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{84},{\mathcal{F}}_{85},{\mathcal{F}}_{86},{\mathcal{F}}_{87}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \frac{\left(1-2\nu \right)}{2}{{{z}}}^{2}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{88},{\mathcal{F}}_{89},{\mathcal{F}}_{90},{\mathcal{F}}_{91}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \left(1-\nu \right){{{z}}}^{3}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{92},{\mathcal{F}}_{93},{\mathcal{F}}_{94},{\mathcal{F}}_{95}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{{z}}}^{3}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{96},{\mathcal{F}}_{97},{\mathcal{F}}_{98}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{{z}}}^{3}\left(R+{{z}}\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{99},{\mathcal{F}}_{100},{\mathcal{F}}_{101}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \frac{\left(1-2\nu \right)}{2}{{{z}}}^{3}\left(R+{{z}}\right)\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{102},{\mathcal{F}}_{103},{\mathcal{F}}_{104},{\mathcal{F}}_{105}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \frac{\left(1-2\nu \right)}{2}{{{z}}}^{3}\left(R+{{z}}\right)\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{106},{\mathcal{F}}_{107},{\mathcal{F}}_{108},{\mathcal{F}}_{109}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{\lambda \left(1-\nu \right)}{\left(R+{{z}}\right)}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{110},{\mathcal{F}}_{111},{\mathcal{F}}_{112},{\mathcal{F}}_{113}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu \left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{114},{\mathcal{F}}_{115},{\mathcal{F}}_{116}\right\}={\int }_{-h/2}^{h/2}\lambda \nu \left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{117},{\mathcal{F}}_{118},{\mathcal{F}}_{119},{\mathcal{F}}_{120}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{\lambda \left(1-\nu \right)}{\left(R+{{z}}\right)}{{z}}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{121},{\mathcal{F}}_{122},{\mathcal{F}}_{123},{\mathcal{F}}_{124}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{z}}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{125},{\mathcal{F}}_{126},{\mathcal{F}}_{127}\right\}={\int }_{-h/2}^{h/2}\lambda \nu {{z}}\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{128},{\mathcal{F}}_{129},{\mathcal{F}}_{130},{\mathcal{F}}_{131}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{\lambda \left(1-\nu \right)}{\left(R+{{z}}\right)}{{{z}}}^{2}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{132},{\mathcal{F}}_{133},{\mathcal{F}}_{134},{\mathcal{F}}_{135}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{{z}}}^{2}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{136},{\mathcal{F}}_{137},{\mathcal{F}}_{138}\right\}={\int }_{-h/2}^{h/2}\lambda \nu {{{z}}}^{2}\left\{\mathrm{1,2z},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{139},{\mathcal{F}}_{140},{\mathcal{F}}_{141},{\mathcal{F}}_{142}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{\lambda \left(1-\nu \right)}{\left(R+{{z}}\right)}{{{z}}}^{2}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{143},{\mathcal{F}}_{144},{\mathcal{F}}_{145},{\mathcal{F}}_{146}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \nu {{{z}}}^{2}\left\{1,{{z}},{{{z}}}^{2},{{{z}}}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathcal{F}}_{147},{\mathcal{F}}_{148},{\mathcal{F}}_{149}\right\}={\int }_{-h/2}^{h/2}\lambda \nu {{{z}}}^{2}\left\{1,2{{z}},3{{{z}}}^{2}\right\}{\text{d}}z.$$
$$\left\{{\mathbb{C}}_{1},{\mathbb{C}}_{2},{\mathbb{C}}_{5},{\mathbb{C}}_{6}\right\}={\int }_{-\frac{h}{2}}^\frac{h}{2}\lambda \alpha \left(R+z\right)\left(1+\vartheta \right)\left\{1,z,{z}^{2},{z}^{3}\right\}{\text{d}}z.$$
$$\left\{{\mathbb{C}}_{3},{\mathbb{C}}_{4},{\mathbb{C}}_{7},{\mathbb{C}}_{8}\right\}={\int }_{-h/2}^{h/2}\lambda \alpha \left(1+\vartheta \right)\left\{1,z,{z}^{2},{z}^{3}\right\}{\text{d}}z.$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntayeesh, T.J., Arefi, M. Higher-order displacement, strain, and stress analyses of origami graphene auxetic metamaterial-reinforced cylindrical shell. Arch. Civ. Mech. Eng. 24, 149 (2024). https://doi.org/10.1007/s43452-024-00956-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00956-z

Keywords

Navigation