Skip to main content

Advertisement

Log in

Production and characterization of natural clay-free green building brick materials using water treatment sludge and oak wood ash

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The experimental study investigates the feasibility of using two extensively waste (wastewater treatment sludge and oak wood ash) as raw materials in the manufacture of clay-free bricks. The wastes were characterized by particle-size distribution, chemical composition (EDX), X-ray diffraction (XRD), thermal analysis, and scanning electron microscopy (SEM). The oak wood ash replaced the water treatment sludge in different amounts (10–30 wt.%) in brick manufacture. The properties of clay-free green building brick were compared with the conventional bricks (obtained by standard methods). The properties depended of waste proportion. The 30 wt.% oak wood ash content achieved increase apparent porosity, with direct effect over water absorption and decreasing compressive strength. By replacing the water treatment sludge with oak wood ash, the CaO content increased, with negative effect over efflorescence on the surface; however, for 30 wt.% oak wood ash is below the imposed limits. Amounts of heavy metals in the leachates of fired samples are observed below the specified limits of the EPA (Environment Protection Authority). Additionally, the clay-free green bricks showed properties similar to the commercial bricks and improved thermal conductivity. The bricks containing 80 wt.% wastewater treatment sludge and 20 wt.% oak wood ash fulfilled standard requirements for clay masonry materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Erdogmus E, Harja M, Gencel O, Sutcu M, Yaras A. New construction materials synthesized from water treatment sludge and fired clay brick wastes. J Build Eng. 2021;42: 102471. https://doi.org/10.1016/j.jobe.2021.102471.

    Article  Google Scholar 

  2. Ibrahim JEF, Kotova OB, Sun S, Kurovics E, Tihtih M, Gömze LA. Preparation of innovative eco-efficient composite bricks based on zeolite-poor rock and Hen’s eggshell. J Build Eng. 2021. https://doi.org/10.1016/j.jobe.2021.103491.

    Article  Google Scholar 

  3. Ibrahim JEF, Tihtih M, Gömze LA. Environmentally-friendly ceramic bricks made from zeolite-poor rock and sawdust. Constr Build Mater. 2021;297: 123715. https://doi.org/10.1016/j.conbuildmat.2021.123715.

    Article  CAS  Google Scholar 

  4. Riaz MH, Khitab A, Ahmed S. Evaluation of sustainable clay bricks incorporating brick kiln dust. J Build Eng. 2019;24: 100725. https://doi.org/10.1016/j.jobe.2019.02.017.

    Article  Google Scholar 

  5. Hoła A. Methodology for the in situ testing of the moisture content of brick walls: an example of application. Archiv Civ Mech Eng. 2020;20:114. https://doi.org/10.1007/s43452-020-00120-3.

    Article  Google Scholar 

  6. Heniegal AM, Ramadan MA, Naguib A, Agwa IS. Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Stud Constr Mater. 2020;13: e00397. https://doi.org/10.1016/j.cscm.2020.e00397.

    Article  Google Scholar 

  7. Gencel O, Munir MJ, Kazmi SMS, Sutcu M, Erdogmus E, Velasco PM, Quesada DE. Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceram Int. 2021;47:30425–38. https://doi.org/10.1016/j.ceramint.2021.07.222.

    Article  CAS  Google Scholar 

  8. Akintola GO, Amponsah-Dacosta F, Mhlongo SE. Geotechnical evaluation of clayey materials for quality burnt bricks. Heliyon. 2020;6: e05626. https://doi.org/10.1016/j.heliyon.2020.e05626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munir MJ, Kazmi SMS, Gencel O, Ahmad MR, Chen B. Synergistic effect of rice husk, glass and marble sludges on the engineering characteristics of eco-friendly bricks. J Build Eng. 2021;42: 102484. https://doi.org/10.1016/j.jobe.2021.102484.

    Article  Google Scholar 

  10. Eliche-Quesada D, Felipe-Sesé MA, López-Pérez JA, Infantes-Molina A. Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram Int. 2017;43:463–75. https://doi.org/10.1016/j.ceramint.2016.09.181.

    Article  CAS  Google Scholar 

  11. De Silva GS, Surangi MLC. Effect of waste rice husk ash on structural, thermal and run-off properties of clay roof tiles. Constr Build Mater. 2017;154:251–7. https://doi.org/10.1016/j.conbuildmat.2017.07.169.

    Article  CAS  Google Scholar 

  12. Hegazy BE, Fouad HA, Hassanain AM (2012) Brick manufacturing from water treatment sludge and rice husk ash. Aus J Bas Appl Sci 6: 453–461. https://sswm.info/node/4027

  13. Ramadan MO, Fouad HA, Hassanain MA. Reuse of water treatment plant sludge in brick manufacturing. J Appl Sci Res. 2008;4:1223–9.

    CAS  Google Scholar 

  14. Kizinievič O, Kizinievič V, Pundiene I, Molotokas D. Eco-friendly fired clay brick manufactured with agricultural solid waste. Arch Civ Mech Eng. 2018;18(4):1156–65. https://doi.org/10.1007/s43452-020-00120-3.

    Article  Google Scholar 

  15. Saleem MA, Kazmi SMS, Abbas S. Clay bricks prepared with sugarcane bagasse and rice husk ash—a sustainable solution. MATEC Web Conf. 2017;120:03001. https://doi.org/10.1051/matecconf/201712003001.

    Article  CAS  Google Scholar 

  16. Srisuwan A, Sompech S, Saengthong C, Thaomola S, Chindraprasirt P, Phonphuak N. Preparation and properties of fired clay bricks with added wood ash. J Met Mater Miner. 2020;30:84–9.

    Article  CAS  Google Scholar 

  17. Kotova OB, Ignatiev GV, Shushkov DA, Harja M, Broekmans MA. Preparation and properties of ceramic materials from coal fly ash. In: Minerals: structure, properties methods of investigation. Cham: Springer; 2020. p. 101–7.

    Chapter  Google Scholar 

  18. Maraveas C. Production of sustainable construction materials using agro-wastes. Materials. 2020;13:262. https://doi.org/10.3390/ma13020262.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barbuta M, Diaconescu RM, Harja M. Using neural networks for prediction of properties of polymer concrete with fly ash. J Mater Civil Eng. 2012;24:523–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000413.

    Article  CAS  Google Scholar 

  20. Ramachandra R, Mandal S. Prediction of fly ash concrete compressive strengths using soft computing techniques. Comput Concr. 2020;25:83–94. https://doi.org/10.12989/cac.2020.25.1.083.

    Article  Google Scholar 

  21. Li Y, Liu X, Li Z, Ren Y, Wang Y, Zhang W. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials. J Clean Prod. 2021;284: 124777. https://doi.org/10.1016/j.jclepro.2020.124777.

    Article  CAS  Google Scholar 

  22. Harja M, Cimpeanu SM, Dirja M, Bucur D (2016) Synthesis of zeolite from fly ash and their use as soil amendment. Zeolites: useful minerals, pp. 43–66. https://www.intechopen.com/chapters/51961

  23. Fořt J, Šál J, Ševčík R, Doleželová M, Keppert M, Jerman M, Černý R. Biomass fly ash as an alternative to coal fly ash in blended cements: functional aspects. Constr Build Mater. 2021;271: 121544. https://doi.org/10.1016/j.conbuildmat.2020.121544.

    Article  Google Scholar 

  24. Alabduljabbar H, Benjeddou O, Soussi C, Khadimallah MA, Alyousef R. Effects of incorporating wood sawdust on the firing program and the physical and mechanical properties of fired clay bricks. J Build Eng. 2021;35: 102106. https://doi.org/10.1016/j.jobe.2020.102106.

    Article  Google Scholar 

  25. Ikotun BD, Raheem AA. Characteristics of wood ash cement mortar incorporating green-synthesized nano-TiO2. Int J Concr Struct Mater. 2021;15:1–9. https://doi.org/10.1186/s40069-021-00456-x.

    Article  CAS  Google Scholar 

  26. Raju K, Ravindhar S. Multiple categories of bricks used for construction—a review. IOP Conf Series: Mat Sci Eng. 2020;993: 012122. https://doi.org/10.1088/1757-899X/993/1/012122.

    Article  CAS  Google Scholar 

  27. Girondi GD, Marvila MM, de Azevedo ARG, de Souza C, Souza D, de Brito J, Vieira CM. Recycling potential of powdered cigarette waste in the development of ceramic materials. J Mater Cycles Waste Manag. 2020;22:1672–81. https://doi.org/10.1007/s10163-020-01058-7.

    Article  CAS  Google Scholar 

  28. Huang C, Pan JR, Liu Y. Mixing water treatment residual with excavation waste soil in brick and artificial aggregate making. J Environ Eng. 2005;131:272–7. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:2(272).

    Article  CAS  Google Scholar 

  29. Deighton HD, Watmough SA, Basiliko N, Hazlett PW, Reid CR, Gorgolewski A. Trace metal biogeochemical responses following wood ash addition in a northern hardwood forest. Can J For Res. 2021;51:817–33. https://doi.org/10.1139/cjfr-2020-0320.

    Article  CAS  Google Scholar 

  30. Mañosa J, Cerezo-Piñas M, Maldonado-Alameda A, Formosa J, Giro-Paloma J, Rosell JR, Chimenos JM. Water treatment sludge as precursor in non-dehydroxylated kaolin-based alkali-activated cements. Appl Clay Sci. 2021;204: 106032. https://doi.org/10.1016/j.clay.2021.106032.

    Article  CAS  Google Scholar 

  31. Liu C, Chen J. High temperature degradation mechanism of concrete with plastering layer. Materials. 2022;15:398. https://doi.org/10.3390/ma15020398.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buema G, Lisa G, Kotova O, Ciobanu G, Ivaniciuc L, Favier L, Harja M. Application of thermal analysis to improve the preparation conditions of zeolitic materials from flying ash. Env Eng Manag J. 2021;20:377–88.

    Article  CAS  Google Scholar 

  33. Bülbül S, Akçakale N, Yasar M, Gökmese H. The effect of wood ash on the mechanical properties of rubber compounds. Mater Tehnol. 2019;53:333–9.

    Article  Google Scholar 

  34. ASTM-C20. Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. West Conshohocken, PA: ASTM C20-00; 2015.

    Google Scholar 

  35. ASTM C67/C67M-20. Standard test methods for sampling and testing brick and structural clay tile. West Conshohocken, PA: American Society of Testing Materials; 2020.

    Google Scholar 

  36. Sutcu M, Alptekin H, Erdogmus E, Er Y, Gencel O. Characteristics of fired clay bricks with waste marble powder addition as building materials. Constr Build Mater. 2015;82:1–8. https://doi.org/10.1016/j.conbuildmat.2015.02.055.

    Article  Google Scholar 

  37. Yaras A, Sutcu M, Gencel O, Erdogmus E. Use of carbonation sludge in clay based building materials processing for eco-friendly, lightweight and thermal insulation. Constr Build Mater. 2019;224:57–65. https://doi.org/10.1016/j.conbuildmat.2019.07.080.

    Article  Google Scholar 

  38. TS EN 771-1 (2005) Specification for masonry units—part 1: clay masonry units

  39. https://www.quantity-takeoff.com/variations-among-1st-class-2nd-class-and-3rd-class-bricks.htm (Accessed 24.01.2022)

  40. Sutcu M. Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks. Ceram Int. 2015;41:2819–27. https://doi.org/10.1016/j.ceramint.2014.10.102.

    Article  CAS  Google Scholar 

  41. SR EN 771-1:2003/A1:2005: https://www.utilul.ro/continut/documente/3214_dp-41.1-p63_335.pdf (Accessed 24.01.2022)

  42. Nhabih HT, Arat KK, Haidi AS. Methods of processing efflorescence of clay Brick. Int J Scient Eng Sci. 2020;3:48–56.

    Google Scholar 

  43. Environmental Protection Agency (US). Code of federal regulations, Section 261.24—toxicity characteristic. Washington, DC: National Archives and Records Administration; 2012.

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Harja, Osman Gencel or Ertugrul Erdogmus.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harja, M., Gencel, O., Sarı, A. et al. Production and characterization of natural clay-free green building brick materials using water treatment sludge and oak wood ash. Archiv.Civ.Mech.Eng 22, 79 (2022). https://doi.org/10.1007/s43452-022-00400-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00400-0

Keywords

Navigation