Skip to main content

Advertisement

Log in

Mechanisms of norcantharidin against renal tubulointerstitial fibrosis

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

This article has no additional data.

Abbreviations

α-SMA:

α-Smooth muscle actin

BMP:

Bone morphogenetic protein

BSA:

Bovine serum albumin

CaN:

Calcineurin

CDKN1A:

Cyclin-dependent kinase inhibitor 1A

CKDs:

Chronic kidney diseases

Col-I:

Collagen I

Col IV:

Type IV Collagen

CRF:

Chronic renal failure

CTD:

Cantharidin

CTGF:

Connective tissue growth factor or CCN2

DN:

Diabetic nephropathy

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

EZH2:

Zeste homolog 2

FN:

Fibronectin, a fibrosis marker

Fn14:

Fibroblast growth factor-inducible 14

FoxO:

Forkhead box O

GAS5:

Growth arrest-specific transcript 5

H3 K79:

Histone H3 lysine79

HEA:

N6-(2-Hydroxyethyl) adenosine

HK-2 cells:

Human renal proximal tubular epithelial cell line

ITGB1:

Integrin beta-1

JNK:

C-Jun amino terminal kinase

KLF5:

Krüppel- like factor 5

lncRNAs:

Long noncoding RNA molecules

miRNAs:

MicroRNAs

MMP9:

Matrix metalloproteinase 9

ncRNAs:

Non-coding RNAs

NCTD:

Norcantharidin

NF-κB:

Nuclear factor-kappaB

NFATc:

Nuclear factor of activated T cells cytosolic component

Nrf2:

Nuclear factor erythroid2-related factor2

OA:

Okadaic acid

PAI-1:

Plasminogen activator inhibitor-1 or SERPINE1

Pink1:

PTEN-induced kinase 1

PON:

Protein overload nephropathy

PP2A:

Protein phosphatase 2A

PP2Aa:

A structural subunit A of PP2A

PP2Ab:

A highly variable regulatory subunit B of PP2A

PP2Ac:

A catalytic subunit C of PP2A

p-Smad3:

C-terminal-phosphorylated Smad3

RTIF:

Renal tubulointerstitial fibrosis

SHH:

Sonic Hedgehog

SIS3:

A specific inhibitor of Smad3

Smad:

Mothers against decapentaplegic homolog

Snail1:

A transcription factor of E-cadherin

SncRNAs:

Short ncRNAs

Sp1:

Special protein1

STAT3:

Signal transducer and activator of transcription 3

TGF-β1:

Transforming growth factor-β1

TWEAK:

Tumor necrosis factor-like weak inducer of apoptosis

UUO:

Unilateral ureteral obstruction

XIST:

X-inactive specific transcript

References

  1. Honkanen RE. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett. 1993;330(3):283–6. https://doi.org/10.1016/0014-5793(93)80889-3.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng J, Wang JJ, Ma HM, Shen MQ, Qian ZM, Bao YX. Norcantharidin down-regulates iron contents in the liver and spleen of lipopolysaccharide-treated mice. Redox Rep. 2022;27(1):119–27. https://doi.org/10.1080/13510002.2022.2088011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang GS. Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol. 1989;26(2):147–62. https://doi.org/10.1016/0378-8741(89)90062-7.

    Article  CAS  PubMed  Google Scholar 

  4. Hsieh CH, Chao KS, Liao HF, Chen YJ. Norcantharidin, derivative of cantharidin, for cancer stem cells. Evid Based Complement Altern Med. 2013;2013: 838651. https://doi.org/10.1155/2013/838651.

    Article  Google Scholar 

  5. Liu FY, Li Y, Peng YM, Ye K, Li J, Liu YH, et al. Norcantharidin ameliorates proteinuria, associated tubulointerstitial inflammation and fibrosis in protein overload nephropathy. Am J Nephrol. 2008;28(3):465–77. https://doi.org/10.1159/000112850.

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Ge Y, Liu FY, Peng YM, Sun L, Li J, et al. Norcantharidin, a protective therapeutic agent in renal tubulointerstitial fibrosis. Mol Cell Biochem. 2012;361(1–2):79–83. https://doi.org/10.1007/s11010-011-1091-z.

    Article  CAS  PubMed  Google Scholar 

  7. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–38. https://doi.org/10.1038/nrneph.2016.48.

    Article  CAS  PubMed  Google Scholar 

  8. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309–26. https://doi.org/10.1146/annurev-physiol-022516-034227.

    Article  CAS  PubMed  Google Scholar 

  9. Rauchman M, Griggs D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl Res. 2019;209:90–104. https://doi.org/10.1016/j.trsl.2019.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, et al. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J. 2019;33(10):10596–606. https://doi.org/10.1096/fj.201900943R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, et al. The genomic response to TGF-β1 dictates failed repair and progression of fibrotic disease in the obstructed kidney. Front Cell Dev Biol. 2021;9: 678524. https://doi.org/10.3389/fcell.2021.678524.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liang S, Wu YS, Li DY, Tang JX, Liu HF. Autophagy and renal fibrosis. Aging Dis. 2022;13(3):712–31. https://doi.org/10.14336/AD.2021.1027.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Afsar B, Afsar RE. Sodium-glucose cotransporter inhibitors and kidney fibrosis: review of the current evidence and related mechanisms. Pharmacol Rep. 2023;75(1):44–68. https://doi.org/10.1007/s43440-022-00442-4.

    Article  CAS  PubMed  Google Scholar 

  14. Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014;7(1):4. https://doi.org/10.1186/1755-1536-7-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fibrosis. Front Physiol. 2017;8:829. https://doi.org/10.3389/fphys.2017.00829.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018;9(11):1126. https://doi.org/10.1038/s41419-018-1157-x.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol. 2002;283:F861–75. https://doi.org/10.1152/ajprenal.00362.2001.

    Article  PubMed  Google Scholar 

  18. Dendooven A, Ishola DA Jr, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA. Oxidative stress in obstructive nephropathy. Int J Exp Pathol. 2011;92:202–10. https://doi.org/10.1111/j.1365-2613.2010.00730.x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gewin LS. Renal fibrosis: primacy of the proximal tubule. Matrix Biol. 2018;68–69:248–62. https://doi.org/10.1016/j.matbio.2018.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev. 2023;103(4):2827–72. https://doi.org/10.1152/physrev.00027.2022.

    Article  CAS  PubMed  Google Scholar 

  21. Cockwell P, Fisher LA. The global burden of chronic kidney disease. Lancet. 2020;395:662–4. https://doi.org/10.1016/S0140-6736(19)32977-0.

    Article  PubMed  Google Scholar 

  22. Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16:269–88. https://doi.org/10.1038/s41581-019-0248-y.

    Article  PubMed  Google Scholar 

  23. Rende U, Guller A, Goldys EM, Pollock C, Saad S. Diagnostic and prognostic biomarkers for tubulointerstitial fibrosis. J Physiol. 2023;601(14):2801–26. https://doi.org/10.1113/JP284289.

    Article  CAS  PubMed  Google Scholar 

  24. Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6(11):643–56. https://doi.org/10.1038/nrneph.2010.

    Article  PubMed  Google Scholar 

  25. Bani-Hani AH, Campbell MT, Meldrum DR, Meldrum KK. Cytokines in epithelial-mesenchymal transition: a new insight into obstructive nephropathy. J Urol. 2008;180(2):461–8. https://doi.org/10.1016/j.juro.2008.04.001.

    Article  CAS  PubMed  Google Scholar 

  26. Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Investig. 2014;124(6):2299–306. https://doi.org/10.1172/JCI72267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Falke LL, Gholizadeh S, Goldschmeding R, Kok Robbert RJ, Nguyen TQ. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol. 2015;11(4):233–44. https://doi.org/10.1038/nrneph.2014.246.

    Article  CAS  PubMed  Google Scholar 

  28. Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11(1):23–33. https://doi.org/10.1038/nrneph.2014.202.

    Article  CAS  PubMed  Google Scholar 

  29. Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother. 2018;101:670–81. https://doi.org/10.1016/j.biopha.2018.02.090.

    Article  CAS  PubMed  Google Scholar 

  30. Böttinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27(3):309–20. https://doi.org/10.1016/j.semnephrol.2007.02.009.

    Article  CAS  PubMed  Google Scholar 

  31. Munoz-Felix JM, Gonzalez-Nunez M, Martinez-Salgado C, Lopez-Novoa JM. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther. 2015;156:44–58. https://doi.org/10.1016/j.pharmthera.2015.10.003.

    Article  CAS  PubMed  Google Scholar 

  32. Cao J, Li J, Zhao H, Feng YL, Chen H, et al. Febuxostat prevents renal interstitial fibrosis by the activation of BMP-7 signaling and inhibition of USAG-1 expression in rats. Am J Nephrol. 2015;42(5):369–78. https://doi.org/10.1159/000443023.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang ZH, Mao JR, Chen H, Zhao H, Feng YL, Chen H, et al. Removal of uremic retention products by hemodialysis is coupled with indiscriminate loss of vital metabolites. Clin Biochem. 2017;50(18):1078–86. https://doi.org/10.1016/j.clinbiochem.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  34. Syn WK, Jung Y, Omenetti A, Abdelmalek M, Guy CD, Yang L, et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology. 2009;137(4):1478-1488.e8. https://doi.org/10.1053/j.gastro.2009.06.051.

    Article  CAS  PubMed  Google Scholar 

  35. Bai Y, Lu H, Lin C, Xu Y, Hu D, Liang Y, et al. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis. Int J Mol Med. 2016;37(5):1317–27. https://doi.org/10.3892/ijmm.2016.2546.

    Article  CAS  PubMed  Google Scholar 

  36. Guan Y, Quan D, Chen K, Kang L, Yang D, Wu H, et al. Kaempferol inhibits renal fibrosis by suppression of the sonic hedgehog signaling pathway. Phytomedicine. 2023;108:154246. https://doi.org/10.1016/j.phymed.2022.

    Article  CAS  PubMed  Google Scholar 

  37. Huffstater T, Merryman WD, Gewin LS. Wnt/beta-catenin in acute kidney injury and progression to chronic kidney disease. Semin Nephrol. 2020;40(2):126–37. https://doi.org/10.1016/j.semnephrol.2020.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Jin D, Kang X, Xu Y, Hu D, Liang Y, et al. Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 2021;9: 696542. https://doi.org/10.3389/fcell.2021.696542.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol. 2012;227:493–507. https://doi.org/10.1002/jcp.22783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flevaris P, Vaughan D. The role of plasminogen activator inhibitor type-1 in fibrosis. Semin Thromb Hemost. 2017;43:169–77. https://doi.org/10.1055/s-0036-1586228.

    Article  CAS  PubMed  Google Scholar 

  41. Kelly K, Plotkin J, Vulgamott ASL, Dagher PC. p53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol. 2003;14:128–38. https://doi.org/10.1097/01.asn.0000040596.23073.01.

    Article  CAS  PubMed  Google Scholar 

  42. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig. 2004;114(4):569–81. https://doi.org/10.1172/JCI21358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan J, Jiang Y, Huang Y, Zhang H, Wang X, Luo C, et al. Liuwei Dihuang decoction drug-containing serum attenuates transforming growth factor-β1-induced epithelial-mesenchymal transition in HK-2 cells by inhibiting NF-κB/snail signaling pathway. Curr Pharm Biotechnol. 2023;24(12):1589–602. https://doi.org/10.2174/1389201024666230228100718.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Chen L, Gao C, Grunert S, Sommer A, Pehamberger H, et al. Loss of histone H3 K79 methyltransferase Dot1l facilitates kidney fibrosis by upregulating endothelin 1 through histone deacetylase 2. J Am Soc Nephrol. 2020;31:337–49. https://doi.org/10.1681/asn.2019070739.

    Article  CAS  PubMed  Google Scholar 

  45. Li ZL, Lv LL, Wang B, Tang TT, Feng Y, Cao JY, et al. The profibrotic effects of MK-8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway. FASEB J. 2019;33(11):12630–43. https://doi.org/10.1096/fj.201901087RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Liu L, Zhou WQ, Cai L, Xu ZG, Rane MJ. Roles of Krüppel-like factor 5 in kidney disease. J Cell Mol Med. 2021;25(5):2342–55. https://doi.org/10.1111/jcmm.16332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43. https://doi.org/10.1038/nm.2144. (1p following 143).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu N, Guo JK, Pang M, Cai L, Xu ZG, Rane MJ, et al. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J Am Soc Nephrol. 2012;23(5):854–67. https://doi.org/10.1681/ASN.2011050493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu N, Wang L, Yang T, Xiong C, Xu L, Shi Y, et al. EGF receptor inhibition alleviates hyperuricemic nephropathy. J Am Soc Nephrol. 2015;26(11):2716–29. https://doi.org/10.1681/ASN.2014080793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi Y, Tao M, Chen H, Ma X, Wang Y, Hu Y, et al. Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis. Kidney Int. 2023;103(3):544–64. https://doi.org/10.1016/j.kint.2022.11.027.

    Article  CAS  PubMed  Google Scholar 

  51. Zeng D, Xiao Z, Xu Q, Luo H, Wen L, Tang C, et al. Norcantharidin protects against renal interstitial fibrosis by suppressing TWEAK-mediated Smad3 phosphorylation. Life Sci. 2020;260: 118488. https://doi.org/10.1016/j.lfs.2020.118488.

    Article  CAS  PubMed  Google Scholar 

  52. Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genom. 2012;44(4):259–67. https://doi.org/10.1152/physiolgenomics.00173.2011.

    Article  CAS  Google Scholar 

  53. Chung ACK, Dong Y, Yang W, Zhong X, Li R, Lan HY. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs. Mol Ther. 2013;21(2):388–98. https://doi.org/10.1038/mt.2012.251.

    Article  CAS  PubMed  Google Scholar 

  54. Wang B, Yao K, Wise AF, Lau R, Shen HH, Tesch GH, et al. miR-378 reduces mesangial hypertrophy and kidney tubular fibrosis via MAPK signaling. Clin Sci (Lond). 2017;131(5):411–23. https://doi.org/10.1042/CS20160571.

    Article  CAS  PubMed  Google Scholar 

  55. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300–7. https://doi.org/10.1038/nsmb.2480.

    Article  CAS  PubMed  Google Scholar 

  56. He Y, Wu Y, Huang C, Meng X, Ma T, Wu B, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta. 2014;1842(11):2204–15. https://doi.org/10.1016/j.bbadis.2014.08.015.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou Q, Chung ACK, Huang XR, Dong Y, Yu X, Lan HY. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol. 2014;184(2):409–17. https://doi.org/10.1016/j.ajpath.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  58. Su H, Wan C, Song A, Qiu Y, Xiong W, Zhang C. Oxidative stress and renal fibrosis: mechanisms and therapies. Adv Exp Med Biol. 2019;1165:585–604. https://doi.org/10.1007/978-981-13-8871-2_29.

    Article  CAS  PubMed  Google Scholar 

  59. Yin Q, Liu H. Connective tissue growth factor and renal fibrosis. Adv Exp Med Biol. 2019;1165:365–80. https://doi.org/10.1007/978-981-13-8871-2_17.

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Zhu H, Huang L, Zhu X, Sha J, Li G, et al. Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways. Exp Mol Pathol. 2019;111: 104296. https://doi.org/10.1016/j.yexmp.2019.104296.

    Article  CAS  PubMed  Google Scholar 

  61. Sheng L, Zhuang S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front Physiol. 2020;11:569322. https://doi.org/10.3389/fphys.2020.569322.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hou T, Xiao Z, Li Y, You YH, Li H, Liu YP, et al. Norcantharidin inhibits renal interstitial fibrosis by downregulating PP2Ac expression. Am J Transl Res. 2015;7(11):2199–211 (PMC4697700).

  63. Xiao Z, Wen L, Zeng D, Yin D, Zhou X, Tang C, et al. Protein phosphatase 2A inhibiting β-catenin phosphorylation contributes critically to the anti-renal interstitial fibrotic effect of norcantharidin. Inflammation. 2020;43(3):878–91. https://doi.org/10.1007/s10753-019-01173-0.

    Article  CAS  PubMed  Google Scholar 

  64. Ruby M, Gifford CC, Pandey R, Raj VS, Sabbisetti VS, Ajay AK. Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis. Cells. 2023;12(3):412. https://doi.org/10.3390/cells12030412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Liu FY, Peng YM, Yin D, Zhou X, Tang C, et al. Norcantharidin inhibits proliferation and fibronectin expression of HK-2 cells induced by albumin in vitro. Cell Biol Int. 2011;35(12):1239–41. https://doi.org/10.1042/CBI20100850.

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Chen Q, Liu FY, Peng YM, Wang S, Li J, et al. Norcantharidin inhibits the expression of extracellular matrix and TGF-β1 in HK-2 cells induced by high glucose independent of calcineurin signal pathway. Lab Investig. 2011;91(12):1706–16. https://doi.org/10.1038/labinvest.2011.119.

    Article  CAS  PubMed  Google Scholar 

  67. Li Y, Sun Y, Liu F, Sun L, Li J, Duan S, et al. Norcantharidin inhibits renal interstitial fibrosis by blocking the tubular epithelial-mesenchymal transition. PLoS ONE. 2013;8(6): e66356. https://doi.org/10.1371/journal.pone.0066356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Y, Chen Q, Liu FY, Peng YM, Hou T, Duan SB, et al. Norcantharidin attenuates tubulointerstitial fibrosis in rat models with diabetic nephropathy. Ren Fail. 2011;33(2):233–41. https://doi.org/10.3109/0886022X.2011.553305.

    Article  CAS  PubMed  Google Scholar 

  69. Okada H, Kikuta T, Kobayashi T, Inoue T, Kanno Y, Takigawa M, et al. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol. 2005;16(1):133–43. https://doi.org/10.1681/ASN.2004040339.

    Article  CAS  PubMed  Google Scholar 

  70. Phanish MK, Winn SK, Dockrell ME. Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol. 2010;114(3):e83-92. https://doi.org/10.1159/000262316.

    Article  CAS  PubMed  Google Scholar 

  71. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem J. 2001;353(Pt 3):417–39. https://doi.org/10.1042/0264-6021:3530417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mumby M. The 3D structure of protein phosphatase 2A: new insights into a ubiquitous regulator of cell signaling. ACS Chem Biol. 2007;2(2):99–103. https://doi.org/10.1021/cb700021z.

    Article  CAS  PubMed  Google Scholar 

  73. Pais SM, Téllez-Iñón MT, Capiati DA. Serine/threonine protein phosphatases type 2A and their roles in stress signaling. Plant Signal Behav. 2009;4(11):1013–5. https://doi.org/10.4161/psb.4.11.9783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hill TA, Stewart SG, Gordon CP, Ackland SP, Gilbert J, Sauer B, et al. Norcantharidin analogues: synthesis, anticancer activity and protein phosphatase 1 and 2A inhibition. Chem Med Chem. 2008;3(12):1878–92. https://doi.org/10.1002/cmdc.200800192.

    Article  CAS  PubMed  Google Scholar 

  75. Deng L, Tang S. Norcantharidin analogues: a patent review (2006–2010). Expert Opin Ther Pat. 2011;21(11):1743–53. https://doi.org/10.1517/13543776.2011.629190.

    Article  CAS  PubMed  Google Scholar 

  76. Kadioglu O, Kermani NS, Kelter G, Schumacher U, Fiebig HH, Greten HJ, et al. Pharmacogenomics of cantharidin in tumor cells. Biochem Pharmacol. 2014;87(3):399–409. https://doi.org/10.1016/j.bcp.2013.10.025.

    Article  CAS  PubMed  Google Scholar 

  77. Luo HW, Yin DD, Xiao Z, Wen L, Liao YJ, Tang CY, et al. Anti-renal interstitial fibrosis effect of norcantharidin is exerted through inhibition of PP2Ac-mediated C-terminal phosphorylation of Smad3. Chem Biol Drug Des. 2021;97(2):293–304. https://doi.org/10.1111/cbdd.13781.

    Article  CAS  PubMed  Google Scholar 

  78. Wiley SR, Winkles JA. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 2003;14(3–4):241–9. https://doi.org/10.1016/s1359-6101(03)00019-4.

    Article  CAS  PubMed  Google Scholar 

  79. Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol. 2021;254(1):5–19. https://doi.org/10.1002/path.5631.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Zeng W, Xia Y. TWEAK/Fn14 axis is an important player in fibrosis. J Cell Physiol. 81–2021;236(5):3304–16. https://doi.org/10.1002/jcp.30089.

  81. Hu G, Liang L, Liu Y, Wen L, Liao YJ, Tang CY, et al. TWEAK/Fn14 interaction confers aggressive properties to cutaneous squamous cell carcinoma. J Investig Dermatol. 2019;139:796–806. https://doi.org/10.1016/j.jid.2018.09.035.

    Article  CAS  PubMed  Google Scholar 

  82. Doerner JL, Wen J, Xia Y, Wen L, Liao YJ, Tang CY, et al. TWEAK/Fn14 signaling involvement in the pathogenesis of cutaneous disease in the MRL/lpr model of spontaneous lupus. J Investig Dermatol. 2015;135(8):1986–95. https://doi.org/10.1038/jid.2015.124.

    Article  CAS  PubMed  Google Scholar 

  83. Poveda J, Sanz AB, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Sanchez-Nino MD, et al. Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Exp Mol Med. 2017;49(7): e352. https://doi.org/10.1038/emm.2017.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu C, Zhang L, Liu Z, Li C, Bai Y. TWEAK/Fn14 interaction induces proliferation and migration in human airway smooth muscle cells via activating the NF-κB pathway. J Cell Biochem. 2018;119(4):3528–36. https://doi.org/10.1002/jcb.26525.

    Article  CAS  PubMed  Google Scholar 

  85. Itoigawa Y, Harada N, Harada S, Ruiz-Ortega M, Cannata-Ortiz P, Sanchez-Nino MD, et al. TWEAK enhances TGF-beta-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Respir Res. 2015;16(1):48. https://doi.org/10.1186/s12931-015-0207-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Son A, Oshio T, Kawamura YI, Hagiwara T, Yamazaki M, Inagaki-Ohara K, et al. TWEAK/Fn14 pathway promotes a T helper 2-type chronic colitis with fibrosis in mice. Mucosal Immunol. 2013;6(6):1131–42. https://doi.org/10.1038/mi.2013.10.

    Article  CAS  PubMed  Google Scholar 

  87. Liu Z, Xue L, Liu Z, Huang J, Wen J, Hu J, Bo L, et al. Tumor necrosis factor-like weak inducer of apoptosis accelerates the progression of renal fibrosis in lupus nephritis by activating SMAD and p38 MAPK in TGF-β1 signaling pathway. Mediat Inflamm. 2016;2016:8986451. https://doi.org/10.1155/2016/8986451.

    Article  CAS  Google Scholar 

  88. Wang A, Zhang F, Xu H, Huang J, Wen J, Hu J, Bo L, et al. TWEAK/Fn14 promotes pro-inflammatory cytokine secretion in hepatic stellate cells via NF-κB/STAT3 pathways. Mol Immunol. 2017;87:67–75. https://doi.org/10.1016/j.molimm.2017.04.003.

    Article  CAS  PubMed  Google Scholar 

  89. Valino-Rivas L, Cuarental L, Grana O, Bucala R, Leng L, Sanz A, Gomez G, et al. TWEAK increases CD74 expression and sensitizes to DDT proinflammatory actions in tubular cells. PLoS ONE. 2018;13(6): e0199391. https://doi.org/10.1371/journal.pone.0199391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ucero AC, Benito-Martin A, Fuentes-Calvo I, Santamaria B, Blanco J, Lopez-Novoa JM, et al. TNF-related weakinducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast. Biochim Biophys Acta Gen Subj. 2013;1832(10):1744–55. https://doi.org/10.1016/j.bbadis.2013.05.032.

    Article  CAS  Google Scholar 

  91. Xia Y, Campbell SR, Broder A, Santamaria B, Blanco J, Lopez-Novoa JM, et al. Inhibition of the TWEAK/Fn14 pathway attenuates renal disease in nephrotoxic serum nephritis. Clin Immunol. 2012;145(2):108–21. https://doi.org/10.1016/j.clim.2012.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hotta K, Sho M, Yamato I, Shimada K, Harada H, Akahori T, et al. Direct targeting of fibroblast growth factor-inducible 14 protein protects against renal ischemia reperfusion injury. Kidney Int. 2011;79(2):179–88. https://doi.org/10.1038/ki.2010.379.

    Article  CAS  PubMed  Google Scholar 

  93. Xia W, He Y, Gan Y, Zhang B, Dai G, Ru F, et al. Long non-coding RNA: an emerging contributor and potential therapeutic target in renal fibrosis. Front Genet. 2021;12: 682904. https://doi.org/10.3389/fgene.2021.682904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiao H, Liao Y, Tang C, Xiao Z, Luo H, Li J, et al. RNA-Seq analysis of potential lncRNAs and genes for the anti-renal fibrotic effect of norcantharidin. J Cell Biochem. 2019;120(10):17354–67. https://doi.org/10.1002/jcb.28999.

    Article  CAS  PubMed  Google Scholar 

  95. Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58. https://doi.org/10.1016/j.cell.2010.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. https://doi.org/10.1038/nrg3606.

    Article  CAS  PubMed  Google Scholar 

  97. Chen H, Fan Y, Jing H, Tang S, Zhou J. Emerging role of lncRNAs in renal fibrosis. Arch Biochem Biophys. 2020;692: 108530. https://doi.org/10.1016/j.abb.2020.108530.

    Article  CAS  PubMed  Google Scholar 

  98. Gu YY, Dou JJ, Huang XR, Liu XS, Lan HY. Transforming growth factor-β and long non-coding RNA in renal inflammation and fibrosis. Front Physiol. 2021;12: 684236. https://doi.org/10.3389/fphys.2021.684236.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang M, Wang S, Yao D, Yan Q, Lu W. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy. Mol Cell Endocrinol. 2016;426:136–45. https://doi.org/10.1016/j.mce.2016.02.020.

    Article  CAS  PubMed  Google Scholar 

  100. Zhou Q, Huang XR, Yu X, Yu J, Lan HY. Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation. Mol Ther. 2015;23(6):1034–43. https://doi.org/10.1038/mt.2015.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Feng M, Tang PM, Huang XR, Sun SF, You YK, Xiao J, et al. TGF-β mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis. Mol Ther. 2018;26(1):148–61. https://doi.org/10.1016/j.ymthe.2017.09.024.

    Article  CAS  PubMed  Google Scholar 

  102. Chen W, Zhang L, Zhou ZQ, Sun SF, You YK, Xiao J, et al. Effects of long non-coding RNA LINC00963 on renal interstitial fibrosis and oxidative stress of rats with chronic renal failure via the foxo signaling pathway. Cell Physiol Biochem. 2018;46(2):815–28. https://doi.org/10.1159/000488739.

    Article  CAS  PubMed  Google Scholar 

  103. Yang J, Shen Y, Yang X, Long Y, Chen S, Lin X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350–8. https://doi.org/10.1152/ajprenal.00254.2019.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang L, Zhao S, Zhu Y. Long noncoding RNA growth arrest-specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2. FASEB J. 2020;34(2):2703–14. https://doi.org/10.1096/fj.201901380RR.

    Article  CAS  PubMed  Google Scholar 

  105. Moghaddas Sani H, Hejazian M, Hosseinian Khatibi SM, Ardalan M, Zununi VS. Long non-coding RNAs: an essential emerging field in kidney pathogenesis. Biomed Pharmacother. 2018;99:755–65. https://doi.org/10.1016/j.biopha.2018.01.122.

    Article  CAS  PubMed  Google Scholar 

  106. Martin K, Pritchett J, Liewellyn J, Mullan AF, Athwal VS, Dobie R, et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun. 2016;7:12502. https://doi.org/10.1038/ncomms12502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yeh Y, Wei W, Wang Y, Lin S, Sung J, Tang M. Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol. 2010;177(4):1743–54. https://doi.org/10.2353/ajpath.2010.091183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chuang PY, He JC. JAK/STAT signaling in renal diseases. Kidney Int. 2010;78:231–4. https://doi.org/10.1038/ki.2010.158.

    Article  CAS  PubMed  Google Scholar 

  109. Chakraborty D, Šumová B, Mallano T, Chen CW, Distler A, Bergmann C, et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun. 2017;8(1):1130. https://doi.org/10.1038/s41467-017-01236-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lu S, Fan H, Li K, Fan X. Suppression of Elp2 prevents renal fibrosis and inflammation induced by unilateral ureter obstruction (UUO) via inactivating Stat3-regulated TGF-β1 and NF-κB pathways. Biochem Biophys Res Commun. 2018;501(2):400–7. https://doi.org/10.1016/j.bbrc.2018.04.227.

    Article  CAS  PubMed  Google Scholar 

  111. Patel AS, Song JW, Chu SG, Mizumura K, Osorio JC, Shi Y, et al. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PLoS ONE. 2015;10(3): e0121246. https://doi.org/10.1371/journal.pone.0121246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bueno M, Lai YC, Romero Y, Mizumura K, Osorio JC, Shi Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Investig. 2015;125(2):521–38. https://doi.org/10.1172/JCI74942.

    Article  PubMed  Google Scholar 

  113. Tian J, Xiao Z, Wei J, Mizumura K, Osorio JC, Shi Y, et al. NCTD prevents renal interstitial fibrosis via targeting Sp1/lncRNA Gm26669 axis. Int J Biol Sci. 2021;17(12):3118–32. https://doi.org/10.7150/ijbs.59195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pereira SG, Oakley F. Nuclear factor-kappaB1: regulation and function. Int J Biochem Cell Biol. 2008;40(8):1425–30. https://doi.org/10.1016/j.biocel.2007.05.004.

    Article  CAS  PubMed  Google Scholar 

  115. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62. https://doi.org/10.1038/nrm2083.

    Article  CAS  PubMed  Google Scholar 

  116. Huang Y, Liu Q, Liu K, Yagasaki K, Zhang G. Suppression of growth of highly-metastatic human breast cancer cells by norcantharidin and its mechanisms of action. Cytotechnology. 2009;59(3):201–8. https://doi.org/10.1007/s10616-009-9210-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zheng R, Zhu R, Li X, Li X, Shen L, Chen Y, et al. N6-(2-Hydroxyethyl) adenosine from cordyceps cicadae ameliorates Renal interstitial fibrosis and prevents inflammation via TGF-β1/Smad and NF-κB signaling pathway. Front Physiol. 2018;9:1229. https://doi.org/10.3389/fphys.2018.01229.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, et al. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway. Sci Signal. 2012;5(246):75. https://doi.org/10.1126/scisignal.2003086.

    Article  CAS  Google Scholar 

  119. Enwere EK, Lacasse EC, Adam NJ, Korneluk RG. Role of the TWEAK-Fn14-cIAP1-NF-κB signaling axis in the regulation of myogenesis and muscle homeostasis. Front Immunol. 2014;5:34. https://doi.org/10.3389/fimmu.2014.00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (NSFC82003702) and Shanghai-Sailing Program (no. 21YF1438000).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: QSY, JBJ and QG; writing—review and editing: QG; supervision, QG; funding acquisition: QG; project administration: QG and YXB. All authors read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yu-Xin Bao or Qian Guo.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, QS., Bao, YX., Jiang, JB. et al. Mechanisms of norcantharidin against renal tubulointerstitial fibrosis. Pharmacol. Rep 76, 263–272 (2024). https://doi.org/10.1007/s43440-024-00578-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00578-5

Keywords

Navigation