Skip to main content

Advertisement

Log in

Effect of vitamin D supplementation on OPG/RANKL signalling activities in endothelial tissue damage in diet-induced diabetic rat model

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Type 2 Diabetes Mellitus is a chronic metabolic disease that causes endothelial damage and is an important risk factor for atherosclerosis. In the present study vitamin D3 supplementation in rats was used to determine the role of Osteoprotegerin (OPG)/Receptor activator kB ligand (RANKL) signalling in endothelial damage and changes in the expression levels of genes involved in this pathway. We hypothesized that vitamin D3 supplementation affects OPG and RANKL activity in the aorta.

Methods

Diabetes was induced in rats via injections of 40 mg/kg of streptozotocin followed by a high fructose (10%) diet. Group 2 (healthy) and 4 (diabetic) received 170 IU/kg of vitamin D3 weekly for 5 weeks, while Group 1 (healthy) and 2 (diabetic) received sterile saline. The aortas of each group were collected to analyse mRNA expression using the real-time PCR method and also to evaluate magnesium and calcium levels using inductively coupled plasma mass spectrometry.

Results

Opg and Il-1b expression levels were significantly associated with both diabetes and vitamin D3 supplementation in the aortas of the study groups (p ≤ 0.05). Opg mRNA expression was also found to correlate with both Icam-1 and Nos3 mRNA expression levels (r = 0.699, p = 0.001 and r = 0.622, p = 0.003, respectively). In addition, when mineral levels in the aortic tissues were compared among all groups, it was found that the interaction of diabetes and vitamin D3 supplementation significantly affected Mg levels and Mg/Ca ratios.

Conclusions

It is concluded that vitamin D3 supplementation has a modulatory effect on OPG/RANKL activity in the vessel wall by ameliorating endothelial damage in diabetes. This effect may contribute to the regulation of cytokine-mediated vascular homeostasis and mineral deposition in the aorta; therefore, further comprehensive studies are proposed to demonstrate this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Bmp2:

Bone morphogenetic protein 2

Ca:

Calcium

CTL:

Healthy control

CTL + VitD:

Control rats supplemented with Vitamin D3

CVD:

Cardiovascular disease

ECs:

Endothelial cells

eNOS:

Endothelial nitric oxide synthase

Gapdh:

Glyceraldehyde 3-phosphate dehydrogenase

Icam-1:

Intercellular adhesion molecule-1

ICP-MS:

Inductively coupled plasma mass spectrometry

Il-1b:

Interleukin 1 β

Mg:

Magnesium

MMPs:

Metalloproteinases

NF kB:

Nuclear factor кB

Nos3:

Nitric oxide synthase 3

OPG:

Osteoprotegerin

Q-PCR:

Quantitative real-time PCR

RANK:

Receptor activator кB

RANKL:

Receptor activator кB Ligand

Runx2:

RUNX family transcription factor 2

STZ:

Streptozotocin

T2DM:

Type 2 diabetes

TNFa:

Tumor necrosis factor α

VDR:

Vitamin D receptor

VSMCs:

Vascular smooth muscle cells

References

  1. Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: a review. Int J Health Sci (Qassim). 2017;11(2):65–71.

    Google Scholar 

  2. Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6(13):1246–58.

    PubMed  PubMed Central  Google Scholar 

  3. Hadi HAR, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hamilton SJ, Watts GF. Endothelial dysfunction in diabetes: pathogenesis, significance, and treatment. Rev Diabet Stud. 2013;10(2–3):133–56.

    PubMed  PubMed Central  Google Scholar 

  5. Widmer RJ, Lerman A. Endothelial dysfunction and cardiovascular disease. Glob Cardiol Sci Pract. 2014;3:43. https://doi.org/10.5339/gcsp.2014.43.

    Article  Google Scholar 

  6. Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci. 2019;20(3):705.

    CAS  PubMed Central  Google Scholar 

  7. Alfaqih MA, Bashir N, Saadeh R, Khader Y, Barqawi M, Alqudah S. Dysregulation of the RANKL/RANK/OPG axis in thalassemia intermedia patients. BMC Res Notes. 2018;11(1):534.

    PubMed  PubMed Central  Google Scholar 

  8. Barchetta I, Ceccarelli V, Cimini FA, Bertoccini L, Fraioli A, Alessandri C, et al. Impaired bone matrix glycoprotein pattern is associated with increased cardio-metabolic risk profile in patients with type 2 diabetes mellitus. J Endocrinol Invest. 2018;42(5):513–20.

    PubMed  Google Scholar 

  9. de Castro LF, Burke AB, Wang HD, Tsai J, Florenzano P, Pan KS, et al. Activation of RANK/RANKL/OPG pathway is involved in the pathophysiology of fibrous dysplasia and associated with disease burden. J Bone Miner Res. 2018;34(2):290–4.

    PubMed  Google Scholar 

  10. Kosmopoulos M, Paschou SA, Grapsa J, Anagnostis P, Vryonidou A, Goulis DG, et al. The emerging role of bone markers in diagnosis and risk stratification of patients with coronary artery disease. Angiology. 2019;70:690–700. https://doi.org/10.1177/0003319718822625.

    Article  CAS  PubMed  Google Scholar 

  11. Pérez de Ciriza C, Lawrie A, Varo N. Osteoprotegerin in Cardiometabolic disorders. Int J Endocrinol. 2015;2015(3):1–15.

    Google Scholar 

  12. Tai N, Inoue D. Association between osteoporosis and atherosclerosis in dyslipidemia. Clin Calcium. 2019;29(2):237–43.

    CAS  PubMed  Google Scholar 

  13. Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE −/− Mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2117–24.

    CAS  PubMed  Google Scholar 

  14. McGonigle JS, Giachelli CM, Scatena M. Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis. 2009;12(1):35–46. https://doi.org/10.1007/s10456-008-9127-z.

    Article  CAS  PubMed  Google Scholar 

  15. Schoppet M, Schaefer JR, Hofbauer LC. Low serum levels of soluble RANK ligand are associated with the presence of coronary artery disease in men. Circulation. 2003;107(11):76e–76. https://doi.org/10.1161/01.CIR.0000060815.25798.02.

    Article  Google Scholar 

  16. Boisson-Vidal C, Benslimane-Ahmim Z, Lokajczyk A, Heymann D, Smadja DM. Osteoprotegerin induces CD34+ differentiation in endothelial progenitor cells. Front Med. 2018;5:331.

    Google Scholar 

  17. Harper E, Forde H, Davenport C, Rochfort KD, Smith D, Cummins PM. Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG RANKL and TRAIL. Vascul Pharmacol. 2016;82:30–40.

    CAS  PubMed  Google Scholar 

  18. Mangan SH, Van Campenhout A, Rush C, Golledge J. Osteoprotegerin upregulates endothelial cell adhesion molecule response to tumor necrosis factor-alpha associated with induction of angiopoietin-2. Cardiovasc Res. 2007;76(3):494–505.

    CAS  PubMed  Google Scholar 

  19. Heymann MF, Herisson F, Davaine JM, Charrier C, Battaglia S, Passuti N, et al. Role of the OPG/RANK/RANKL triad in calcifications of the atheromatous plaques: comparison between carotid and femoral beds. Cytokine. 2012;58(2):300–6.

    CAS  PubMed  Google Scholar 

  20. Secchiero P, Corallini F, Pandolfi A, Consoli A, Candido R, Fabris B, et al. An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol. 2006;169(6):2236–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Melamed ML, Thadhani RI. Mini-review vitamin D therapy in chronic kidney disease and end stage renal disease. Clin J Am Soc Nephrol. 2012;7:358–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and endothelial function. Nutrients. 2020;12(2):1–17.

    CAS  Google Scholar 

  23. Anandabaskar N, Selvarajan S, Dkhar SA, Kamalanathan SK, Tamilarasu K, Bobby Z. Effect of Vitamin D supplementation on vascular functions and oxidative stress in type 2 diabetic patients with Vitamin D deficiency. Indian J Endocrinol Metab. 2017;21(4):555–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. De Vita F, Lauretani F, Bauer J, Bautmans I, Shardell M, Cherubini A, et al. Relationship between vitamin D and inflammatory markers in older individuals. Age (Omaha). 2014;36(4):9694.

    Google Scholar 

  25. Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2010;39(2):419–46.

    CAS  PubMed  Google Scholar 

  26. Razzaque MS. The dualistic role of vitamin D in vascular calcifications. Kidney Int. 2011;79(7):708–14.

    CAS  PubMed  Google Scholar 

  27. Hardwick LL, Jones MR, Brautbar N, Lee DBN. Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J Nutr. 1991;121:13–23.

    CAS  PubMed  Google Scholar 

  28. Villa-Bellosta R. Impact of magnesium:calcium ratio on calcification of the aortic wall. PLoS ONE. 2017;12(6):e0178872.

    PubMed  PubMed Central  Google Scholar 

  29. Wilson RD, Islam MS. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol Rep. 2012;64(1):129–39.

    CAS  PubMed  Google Scholar 

  30. Aydemir D, Salman N, Karimzadehkhouei M, Alaca BE, Turan B, Ulusu NN. Evaluation of the effects of aging on the aorta stiffness in relation with mineral and trace element levels: an optimized method via custom-built stretcher device. Biol Trace Elem Res. 2021;199:2644–52. https://doi.org/10.1007/s12011-020-02380-9.

    Article  CAS  PubMed  Google Scholar 

  31. Aydemir D, Karabulut G, Gok M, Barlas N, Ulusu NN. Data the DEHP induced changes on the trace element and mineral levels in the brain and testis tissues of rats. Data Br. 2019;26:104526.

    Google Scholar 

  32. Aydemir D, Simsek G, Ulusu NN. Dataset of the analyzing trace elements and minerals via ICP-MS: Method validation for the mammalian tissue and serum samples. Data Br. 2020;29:105218.

    Google Scholar 

  33. Glushakova O, Kosugi T, Roncal C, Mu W, Heinig M, Cirillo P, et al. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. J Am Soc Nephrol. 2008;19(9):1712–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Haruna Y, Morita Y, Komai N, Yada T, Sakuta T, Tomita N, et al. Endothelial dysfunction in rat adjuvant-induced arthritis: Vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum. 2006;54(6):1847–55.

    CAS  PubMed  Google Scholar 

  35. Kinlay MB, Ganz MDP. Role of endothelial dysfunction in coronary artery disease and implications for therapy. Am J Cardiol. 1997;80:11I-16I.

    CAS  PubMed  Google Scholar 

  36. Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: the current state of the art. J Pharmacol Toxicol Methods. 2016;78:13–31.

    PubMed  Google Scholar 

  37. Hou XD, Guan XQ, Cao YF, Weng ZM, Hu Q, Bin LH, et al. Inhibition of pancreatic lipase by the constituents in St. John’s wort: in vitro and in silico investigations. Int J Biol Macromol. 2020;145:620–33.

    CAS  PubMed  Google Scholar 

  38. He Y, Yang T, Du Y, Qin L, Ma F, Wu Z, et al. High fat diet significantly changed the global gene expression profile involved in hepatic drug metabolism and pharmacokinetic system in mice. Nutr Metab (Lond). 2020. https://doi.org/10.1186/s12986-020-00456-w.

    Article  Google Scholar 

  39. Song YQ, Guan XQ, Weng ZM, Liu JL, Chen J, Wang L, et al. Discovery of hCES2A inhibitors from: Glycyrrhiza inflata via combination of docking-based virtual screening and fluorescence-based inhibition assays. Food Funct. 2021;12(1):162–76.

    CAS  PubMed  Google Scholar 

  40. Ma R, Deng XL, Du GL, Li C, Xiao S, Aibibai Y, Zhu J. Active vitamin D3, 1,25-(OH) 2 D 3, protects against macrovasculopathy in a rat model of type 2 diabetes mellitus. Genet Mol Res. 2016. https://doi.org/10.4238/gmr.15028113.

    Article  PubMed  Google Scholar 

  41. Valentini A, Cianfarani MA, Federici M, Tarantino U, Bertoli A. Osteoprotegerin in diabetic osteopathy. Nutr Metab Cardiovasc Dis. 2020;30:49–55.

    CAS  PubMed  Google Scholar 

  42. Valderrábano RJ, Linares MI. Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification. Clin Diabetes Endocrinol. 2018;4(1):9.

    PubMed  PubMed Central  Google Scholar 

  43. Zannettino ACW, Holding CA, Diamond P, Atkins GJ, Kostakis P, Farrugia A, et al. Osteoprotegerin (OPG) is localized to the weibel-palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J Cell Physiol. 2005;204(2):714–23.

    CAS  PubMed  Google Scholar 

  44. Benslimane-Ahmim Z, Poirier F, Delomenie C, Lokajczyk A, Grelac F, Galy-Fauroux I, et al. Mechanistic study of the proangiogenic effect of osteoprotegerin. Angiogenesis. 2013;16(3):575–93.

    CAS  PubMed  Google Scholar 

  45. Zauli G, Corallini F, Bossi F, Fischetti F, Durigutto P, Celeghini C, et al. Osteoprotegerin increases leukocyte adhesion to endothelial cells both in vitro and in vivo. Blood. 2007;110(2):536–43.

    CAS  PubMed  Google Scholar 

  46. García-Gómez MC, Vilahur G. Osteoporosis and vascular calcification: a shared scenario. Clin Investig Arterioscler. 2020;32:33–42.

    PubMed  Google Scholar 

  47. Graves DT, Ding Z, Yang Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2020;82(1):214–24.

    PubMed  Google Scholar 

  48. Riegel A, Maurer T, Prior B, Stegmaier S, Heppert V, Wagner C, et al. Human polymorphonuclear neutrophils express RANK and are activated by its ligand RANKL. Eur J Immunol. 2012;42(4):975–81.

    CAS  PubMed  Google Scholar 

  49. Quercioli A, Mach F, Bertolotto M, Lenglet S, Vuilleumier N, Galan K, et al. Receptor activator of NF-κB ligand (RANKL) increases the release of neutrophil products associated with coronary vulnerability. Thromb Haemost. 2012;107(1):124–39.

    CAS  PubMed  Google Scholar 

  50. Venuraju SM, Yerramasu A, Corder R, Lahiri A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol. 2010;55(19):2049–61. https://doi.org/10.1016/j.jacc.2010.03.013.

    Article  CAS  PubMed  Google Scholar 

  51. O’Brien CA. Control of RANKL gene expression. Bone. 2010;46(4):911–9.

    PubMed  Google Scholar 

  52. Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res. 2004;95(11):1046–57.

    CAS  PubMed  Google Scholar 

  53. Martinesi M, Bruni S, Stio M, Treves C. 1,25-Dihydroxyvitamin D3 inhibits tumor necrosis factor-α-induced adhesion molecule expression in endothelial cells. Cell Biol Int. 2006;30(4):365–75.

    CAS  PubMed  Google Scholar 

  54. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12(7):2097. https://doi.org/10.3390/nu12072097.

    Article  CAS  PubMed Central  Google Scholar 

  55. Martínez-Miguel P, Valdivielso JM, Medrano-Andrés D, Román-García P, Cano-Peñalver JL, Rodríguez-Puyol M, et al. The active form of vitamin D, calcitriol, induces a complex dual upregulation of endothelin and nitric oxide in cultured endothelial cells. Am J Physiol Endocrinol Metab. 2014;307(12):E1085–96.

    PubMed  Google Scholar 

  56. Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, Markovic M, Kuebler WM, Erben RG. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28(1):53–64. https://doi.org/10.1210/me.2013-1252.

    Article  CAS  PubMed  Google Scholar 

  57. Martinez-Moreno JM, Herencia C, Montes de Oca A, Muñoz-Castañeda JR, Rodríguez-Ortiz ME, Díaz-Tocados JM, Peralbo-Santaella E, Camargo A, Canalejo A, Rodriguez M, Velasco-Gimena F, Almaden Y. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells. FASEB J. 2016;30(3):1367–76. https://doi.org/10.1096/fj.15-272872 (Epub 2015 Dec 23. PMID: 26700731).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang JY, Wu P, Chen D, Ning F, Lu Q, Qiu X, Hewison M, Tamblyn JA, Kilby MD, Lash GE. Vitamin D promotes trophoblast cell induced separation of vascular smooth muscle cells in vascular remodeling via induction of G-CSF. Front Cell Dev Biol. 2020;22(8): 601043. https://doi.org/10.3389/fcell.2020.601043.

    Article  Google Scholar 

  59. White KA, Olabisi RM. Spatiotemporal control strategies for bone formation through tissue engineering and regenerative medicine approaches. Adv Healthc Mater. 2019;8(2):1801044.

    Google Scholar 

  60. Lee M-H, Kim Y-J, Kim H-J, Park H-D, Kang A-R, Kyung H-M, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-β1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem. 2003;278(36):34387–94.

    CAS  PubMed  Google Scholar 

  61. Byon CH, Sun Y, Chen J, Yuan K, Mao X, Heath JM, et al. Runx2-upregulated receptor activator of nuclear factor κB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol. 2011;31(6):1387–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun M, Chang Q, Xin M, Wang Q, Li H, Qian J. Endogenous bone morphogenetic protein 2 plays a role in vascular smooth muscle cell calcification induced by interleukin 6 in vitro. Int J Immunopathol Pharmacol. 2017;30:227–37. https://doi.org/10.1177/0394632016689571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tintut Y, Patel J, Parhami F, Demer LL. Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation. 2000;102(21):2636–42.

    CAS  PubMed  Google Scholar 

  64. Aydemir D, Karabulut G, Şimşek G, Gok M, Barlas N, Ulusu NN. Impact of the Di(2-ethylhexyl) phthalate administration on trace element and mineral levels in relation of kidney and liver damage in rats. Biol Trace Elem Res. 2018;186(2):474–88. https://doi.org/10.1007/s12011-018-1331-0.

    Article  CAS  PubMed  Google Scholar 

  65. Liao F, Folsom AR, Brancati FL. Is low magnesium concentration a risk factor for coronary heart disease? The atherosclerosis risk in communities (ARIC) study. Am Heart J. 1998;136(3):480–90.

    CAS  PubMed  Google Scholar 

  66. Proudfoot D. Calcium signaling and tissue calcification. Cold Spring Harb Perspect Biol. 2019;11(10):a035303.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeper LW, De Baaij JHF. Magnesium and calciprotein particles in vascular calcification: the good cop and the bad cop. Curr Opin Nephrol Hypertens. 2019;28:368–74.

    CAS  PubMed  Google Scholar 

  68. Hénaut L, Massy ZA. Magnesium as a calcification inhibitor. Adv Chronic Kidney Dis. 2018;25:281–90.

    PubMed  Google Scholar 

  69. Tebben PJ, Singh RJ, Kumar R. Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev. 2016;37:521–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Aoshima Y, Mizobuchi M, Ogata H, Kumata C, Nakazawa A, Kondo F, et al. Vitamin D receptor activators inhibit vascular smooth muscle cell mineralization induced by phosphate and TNF-α. Nephrol Dial Transplant. 2012;27(5):1800–6.

    CAS  PubMed  Google Scholar 

  71. Majeed F. Low levels of Vitamin D an emerging risk for cardiovascular diseases: a review. Int J Health Sci (Qassim). 2017;11(5):71–6.

    Google Scholar 

  72. Wang J, Zhou J, Robertson G, Lee V. Vitamin D in vascular calcification: a double-edged sword? Nutrients. 2018;10(5):652.

    PubMed Central  Google Scholar 

  73. Bozic M, Álvarez Á, de Pablo C, Sanchez-Niño M-D, Ortiz A, Dolcet X, et al. Impaired vitamin D signaling in endothelial cell leads to an enhanced leukocyte-endothelium interplay: implications for atherosclerosis development. PLoS ONE. 2015;10(8):e0136863 (Bader M, editor).

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Scientific Research Projects Coordination Unit of Istanbul University (Project numbers: TYL-2019-32715 and TYL-2017-26139).

Author information

Authors and Affiliations

Authors

Contributions

GC conducted the experiments, performed the statistical analysis, wrote, and edited the original draft. MA, ASA, DA participated in experiments. MA, FKD, ASA, DA, NNU, TU, and EKB conceived and participated in the study design. EKB reviewed the manuscript. All authors contributed to and have approved the final version of the manuscript.

Corresponding author

Correspondence to Gizem Celebi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celebi, G., Anapali, M., Dagistanli, F.K. et al. Effect of vitamin D supplementation on OPG/RANKL signalling activities in endothelial tissue damage in diet-induced diabetic rat model. Pharmacol. Rep 74, 124–134 (2022). https://doi.org/10.1007/s43440-021-00332-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00332-1

Keywords

Navigation