Skip to main content

Advertisement

Log in

Synthesis and pharmacological evaluation of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Prostate cancer (PCa) is the most common malignancy in men and in the absence of any effective treatments available.

Methods

For the development of potential anticancer agents, 24 kinds of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety were synthesized and characterized by using spectroscopic methods. Their pharmacological activities were evaluated against human PCa cell lines (PC-3 and LNCaP) and a1-adrenergic receptors (a1-ARs; α1a, α1b, and α1d-ARs). The structure–activity relationship of these designed arylpiperazine derivatives was rationally explored and discussed.

Results

Among these derivatives, 3c, 3d, 3h, 3k, 3o, and 3s exhibited the most potent activity against the tested cancer cells, and some derivatives with potent anticancer activities exhibited better a1-AR subtype selectivity than others did (selectivity ratio > 10).

Conclusion

This work provided a potential lead compound for the further development of anticancer agents for PCa therapy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA-Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–87.

    Article  CAS  PubMed  Google Scholar 

  3. Nelson WG, De Marzo AM, Isaacs WB. Mechanisms of disease. The molecular pathogenesis of prostate cancer: a new role for inflammation? New Engl J Med. 2003;349(4):366–81.

    Article  CAS  PubMed  Google Scholar 

  4. Frydenberg M, Stricker PD, Kaye KW. Prostate cancer diagnosis and management. Lancet. 1997;349(9066):1681–7.

    Article  CAS  PubMed  Google Scholar 

  5. Dorff TB, Glode LM. Current role of neoadjuvant and adjuvant systemic therapy for high-risk localized prostate cancer. Curr Opin Urol. 2013;23(4):366–71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Loblaw DA, Walker-Dilks C, Winquist E, Hotte SJ, G.C.D.S.G. of C.C.O.P. Systemic therapy in men with metastatic castration-resistant prostate cancer: a systematic review. Clin Oncol (R Coll Riodiol). 2013;25(7):406–30.

    Article  CAS  Google Scholar 

  7. Han JY, Zhu FQ, Xu X, Huang H, Huang WQ, Cui WH, Dai H, Jiang JX, Wang SL. Tetramethylpyrazine hydrochloride inhibits proliferation and apoptosis in human prostate cancer PC3 cells through Akt signaling pathway. J Third Mil Med Univ. 2013;35:105–8.

    CAS  Google Scholar 

  8. Zou C, Li X, Jiang R. The progress of molecular mechanism studies for Chinese traditional medicine on prostate cancer therapy. Chin J Androl. 2012;26(1):66–8.

    Google Scholar 

  9. Akduman B, Crawford ED. The management of high risk the prostate cancer. J Urol. 2003;169(6):1993–8.

    Article  PubMed  Google Scholar 

  10. Szkaradek N, Rapacz A, Pytka K, Filipek B, Siwek A, Cegła M, Marona H. Synthesis and preliminary evaluation of pharmacological properties of some piperazine derivatives of xanthone. Bioorg Med Chem. 2013;21(2):514–22.

    Article  CAS  PubMed  Google Scholar 

  11. Leopoldo M, Lacivita E, Passafiume E, Contino M, Colabufo NA, Berardi F, Perrone R. 4-[omega-[4-arylpiperazin-1-yl]alkoxy]phenyl)imidazo[1,2-a]pyridine derivatives: fluorescent high-affinity dopamine D3 receptor ligands as potential probes for receptor visualization. J Med Chem. 2007;50(20):5043–7.

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Sassano MF, Zheng L, Setola V, Chen M, Bai X, Frye SV, Wetsel WC, Roth BL, Jin J. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J Med Chem. 2012;55(53):7141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Romeiro LA, da Silva Ferreira M, da Silva LL, Castro HC, Miranda AL, Silva CL, Noël F, Nascimento JB, Araújo CV, Tibiriçá E, Barreiro EJ, Fraga CA. Discovery of LASSBio-772, a 1,3-benzodioxole N-phenylpiperazine derivative with potent alpha 1A/D-adrenergic receptor blocking properties. Eur J Med Chem. 2011;46(7):3000–12.

    Article  CAS  PubMed  Google Scholar 

  14. Baran M, Kepczyńska E, Zylewski M, Siwek A, Bednarski M, Cegła MT. Studies on novel pyridine and 2-pyridone derivatives of N-arylpiperazine as α-adrenoceptor ligands. Med Chem. 2014;10(2):144–53.

    Article  CAS  PubMed  Google Scholar 

  15. Ananthan S, Saini SK, Zhou G, Hobrath JV, Padmalayam I, Zhai L, Bostwick JR, Antonio T, Reith ME, McDowell S, Cho E, McAleer L, Taylor M, Luedtke RR. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity. J Med Chem. 2014;57(16):7042–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berardi F, Abate C, Ferorelli S, de Robertis AF, Leopoldo M, Colabufo NA, Niso M, Perrone R. Novel 4-(4-aryl)cyclohexyl-1-(2-pyridyl)piperazines as Delta(8)-Delta(7) sterol isomerase (emopamil binding protein) selective ligands with antiproliferative activity. J Med Chem. 2008;51(23):7523–31.

    Article  CAS  PubMed  Google Scholar 

  17. Abate C, Niso M, Contino M, Colabufo NA, Ferorelli S, Perrone R, Berardi F. 1-Cyclohexyl-4-(4-arylcyclohexyl) piperazines: Mixed σ and human Δ(8)–Δ(7) sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity. ChemMedChem. 2011;6(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  18. Liu WH, Chang JX, Liu Y, Luo JW, Zhang JW. Design, synthesis and activities of novel benzothiazole derivatives containing arylpiperazine. Acta Pharmaceutica Sinica. 2013;48(8):1259–65.

    CAS  PubMed  Google Scholar 

  19. Lin HH, Wu WY, Cao SL, Liao J, Ma L, Gao M, Li ZF, Xu X. Synthesis and antiproliferative evaluation of piperazine-1-carbothiohydrazide derivatives of indolin-2-one. Bioorg Med Chem Lett. 2013;23(11):3304–7.

    Article  CAS  PubMed  Google Scholar 

  20. Cao SL, Han Y, Yuan CZ, Wang Y, Xiahou ZK, Liao J, Gao RT, Mao BB, Zhao BL, Li ZF, Xu X. Synthesis and antiproliferative activity of 4-substituted-piperazine-1-carbodithioate derivatives of 2,4-diaminoquinazoline. Eur J Med Chem. 2013;64(6):401–9.

    Article  CAS  PubMed  Google Scholar 

  21. Arnatt CK, Adams JL, Zhang Z, Haney KM, Li G, Zhang Y. Design, syntheses, and characterization of piperazine based chemokine receptor CCR5 antagonists as anti-prostate cancer agents. Bioorg Med Chem Lett. 2014;24(10):2319–23.

    Article  CAS  PubMed  Google Scholar 

  22. Lee YB, Gong YD, Yoon H, Ahn CH, Jeon MK, Kong JY. Synthesis and anticancer activity of new 1-[(5 or 6-substituted 2-alkoxyquinoxalin-3-yl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives. Bioorg Med Chem. 2010;18(22):7966–74.

    Article  CAS  PubMed  Google Scholar 

  23. Guo FJ, Sun J, Gao LL, Wang XY, Zhang Y, Qian SS, Zhu HL. Discovery of phenylpiperazine derivatives as IGF-1R inhibitor with potent antiproliferative properties in vitro. Bioorg Med Chem Lett. 2015;25(5):1067–71.

    Article  CAS  PubMed  Google Scholar 

  24. Castiglione F, Benigni F, Briganti A, Salonia A, Villa L, Nini A, Di Trapani E, Capitanio U, Hedlund P, Montorsi F. Naftopidil for the treatment of benign prostate hyperplasia: a systematic review. Curr Med Res Opin. 2014;30(4):719–32.

    Article  CAS  PubMed  Google Scholar 

  25. Kanda H, Ishii K, Ogura Y, Imamura T, Kanai M, Arima K, Sugimura Y. Naftopidil, a selective alpha-1 adrenoceptor antagonist, inhibits growth of human prostate cancer cells by G1 cell cycle arrest. Int J Cancer. 2008;122(2):444–51.

    Article  CAS  PubMed  Google Scholar 

  26. Masachika E, Kanno T, Nakano T, Gotoh A, Nishizaki T. Naftopidil induces apoptosis in malignant mesothelioma cell lines independently of α1-adrenoceptor blocking. Anticancer Res. 2013;33(3):887–94.

    CAS  PubMed  Google Scholar 

  27. Chen H, Yang ZL, Sun T, Niu JX, Tian XM, Yuan M. Synthesis and biological evaluation of arylpiperazine derivatives as anticancer agents. Lett Org Chem. 2018;15(11):981–9.

    Article  CAS  Google Scholar 

  28. Chen H, Liang X, Sun T, Qiao XG, Zhan Z, Li ZY, He CJ, Ya HY, Yuan M. Synthesis and biological evaluation of estrone 3-O-ether derivatives containing the piperazine moiety. Steroids. 2018;134:101–9.

    Article  CAS  PubMed  Google Scholar 

  29. Chen H, Wang CL, Sun T, Zhou Z, Niu JX, Tian XM, Yuan M. Synthesis, biological evaluation and SAR of naftopidil-based arylpiperazine derivatives. Bioorg Med Chem Lett. 2018;28(9):1534–9.

    Article  CAS  PubMed  Google Scholar 

  30. Chen H, Xu BB, Sun T, Zhou Z, Ya HY, Yuan M. Synthesis and Antitumor activity of novel arylpiperazine derivatives containing the saccharin moiety. Molecules. 2017;22(11):1857.

    Article  PubMed Central  CAS  Google Scholar 

  31. Chen H, Xu F, Xu BB, Xu JY, Shao BH, Huang BY, Yuan M. Design, synthesis and biological evaluation of novel arylpiperazine derivatives on human prostate cancer cell lines. Chin Chem Lett. 2016;27(1):277–82.

    Article  CAS  Google Scholar 

  32. Liu M, Hansen PE, Lin X. Bromophenols in marine algae and their Bioactivities. Mar Drugs. 2011;9(7):1273–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun X, Xu N, Guo J, Yan X. Antitumor effects and the mechanism of two kinds of bromophenols from marine algae. China J Chin Mater Med. 2010;35(9):1173–6.

    CAS  Google Scholar 

  34. Lee JH, Park SE, Hossain MA, Kim MY, Kim M, Chung HY, Choi JS, Yoo Y. 2,3,6-Tribromo-4,5-dihydroxybenzyl methyl ether induces growth inhibition and apoptosis in MCF-7 human breast cancer cells. Arch Pharm Res. 2007;30(9):1132–7.

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Wang G, Xiao L, Xu X, Liu X, Xu P, Lin X. Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of botrytis cinerea and interacts with DNA molecules. Mar Drugs. 2014;12(7):3838–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu M, Zhang W, Wei J, Qiu L, Lin X. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, induces mitochondrial apoptosis in k562 cells and inhibits topoisomerase I in vitro. Toxicol Lett. 2012;211(2):126–34.

    Article  CAS  PubMed  Google Scholar 

  37. Ma M, Zhao J, Wang S, Li S, Yang Y, Shi J, Fan X, He L. Bromophenols coupled with methyl gamma-ureidobutyrate and bromophenol sulfates from the red alga rhodomela confervoides. J Nat Prod. 2006;69(2):206–10.

    Article  CAS  PubMed  Google Scholar 

  38. Wang BG, Gloer JB, Ji NY, Zhao JC. Halogenated organic molecules of rhodomelaceae origin: chemistry and biology. Chem Rev. 2013;113(5):3632–85.

    Article  CAS  PubMed  Google Scholar 

  39. Wang LJ, Wang SY, Jiang B, Wu N, Li XQ, Wang BC, Luo J, Yang M, Jin SH, Shi DY. Design, synthesis and biological evaluation of novel bromophenol derivatives incorporating indolin-2-one moiety as potential anticancer agents. Mar Drugs. 2015;13(2):806–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Colon M, Guevara P, Gerwick WH, Ballantine D. 5′-Hydroxyisoavrainvilleol, a new diphenylmethane derivative from the tropical green-alga avrainvillea-nigricans. J Nat Prod. 1987;50(3):368–74.

    Article  CAS  PubMed  Google Scholar 

  41. Xu NJ, Fan X, Yan XJ, Tseng CK. Screening marine algae from China for their antitumor activities. J Appl Phycol. 2004;16(6):451–6.

    Article  CAS  Google Scholar 

  42. Shi DY, Li J, Guo SJ, Su H, Fan X. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo. Chin J Oceanol Limnol. 2009;27(2):277–82.

    Article  CAS  Google Scholar 

  43. Shoeib NA, Bibby MC, Blunden G, Linley PA, Swaine DJ, Wheelhouse RT, Wright CW. In-vitro cytotoxic activities of the major bromophenols of the red alga Polysiphonia lanosa and some novel synthetic isomers. J Nat Prod. 2004;67(9):1445–9.

    Article  CAS  PubMed  Google Scholar 

  44. Liu M, Zhang W, Wei J, Lin X. Synthesis and alpha-glucosidase inhibitory mechanisms of bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a potential marine bromophenol alpha-glucosidase inhibitor. Mar Drugs. 2011;9(9):1554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pereira R, Benedetti R, Perez-Rodriguez S, Nebbioso A, Garcia-Rodriguez J, Carafa V, Stuhldreier M, Conte M, Rodriguez-Barrios F, Stunnenberg HG, Conte M, Rodríguez-Barrios F, Stunnenberg HG, Gronemeyer H, Altucci L, de Lera AR. Indole-derived psammaplin a analogues as epigenetic modulators with multiple inhibitory activities. J Med Chem. 2012;55(22):9467–91.

    Article  CAS  PubMed  Google Scholar 

  46. Guo CL, Wang L, Zhao Y, Liu H, Li XQ, Jiang B, Luo J, Guo SJ, Wu N, Shi DY. A novel bromophenol derivative BOS-102 induces cell cycle arrest and apoptosis in human A549 lung cancer cells via ROS-mediated PI3K/Akt and the MAPK signaling pathway. Mar Drugs. 2018;16(2):43.

    Article  PubMed Central  CAS  Google Scholar 

  47. Boulangé A, Parraga J, Galán A, Cabedo N, Leleu S, Sanz MJ, Cortes D, Franck X. Synthesis and antibacterial activities of cadiolides A, B and C and analogues. Bioorg Med Chem. 2015;23(13):3618–28.

    Article  PubMed  CAS  Google Scholar 

  48. Xu F, Chen H, Xu J, Liang X, He X, Shao B, Sun X, Li B, Deng X, Yuan M. Synthesis, structure-activity relationship and biological evaluation of novel arylpiperzines as α1A/1D-AR subselective antagonists for BPH. Bioorg Med Chem. 2015;23(24):7735–42.

    Article  CAS  PubMed  Google Scholar 

  49. Banday AH, Giri AK, Parveen R, Bashir N. Design and synthesis of D-ring steroidal isoxazolines and oxazolines as potential antiproliferative agents against LNCaP, PC-3 and DU-145 cells. Steroids. 2014;87:93–8.

    Article  CAS  PubMed  Google Scholar 

  50. Romeo G, Materia L, Modica MN, Pittalà V, Salerno L, Siracusa MA, Manetti F, Botta M, Minneman KP. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes. Eur J Med Chem. 2011;46(7):2676–90.

    Article  CAS  PubMed  Google Scholar 

  51. Awadallah FM, el-Eraky WI, Saleh DO. Synthesis, vasorelaxant activity, and molecular modeling study of some new phthalazine derivatives. Eur J Med Chem. 2012;52(6):14–21.

    Article  CAS  PubMed  Google Scholar 

  52. Prandi A, Franchini S, Manasieva LI, Fossa P, Cichero E, Marucci G, Buccioni M, Cilia A, Pirona L, Brasili L. Synthesis, biological evaluation, and docking studies of tetrahydrofuran–cyclopentanone- and cyclopentanol-based ligands acting at adrenergic α1- and serotonine 5-HT1A receptors. J Med Chem. 2012;55(1):23–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31800833), Zhejiang Provincial Natural Science of Foundation of China (Nos. LZ19H180001 and LQ19C100001), the Wenzhou Medical University and Wenzhou Institute of Biomaterials and Engineering (WIBEZD2017001-03), the Science and Technology Planning Projects of Guangdong Province (No. 2016A020215175), the Natural Science Foundation of Guangdong Province (No. 2016A030313583), the Medical Scientific Research Foundation of Guangdong Province (No. A2016555), the Outstanding Youths Development Scheme of Nanfang Hospital, Southern Medical University (No. 2015J005) and the Science and Technology Planning Project of Guangzhou (No. 201704020070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianliang Shen or Shanchao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Qian, Y., Jia, H. et al. Synthesis and pharmacological evaluation of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety. Pharmacol. Rep 72, 1058–1068 (2020). https://doi.org/10.1007/s43440-019-00041-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00041-w

Keywords

Navigation