Skip to main content

Advertisement

Log in

Baicalin and its aglycone: a novel approach for treatment of metabolic disorders

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The current strategies for prevention and treatment of insulin resistance and type 2 diabetes are not fully effective and frequently accompanied by many negative effects. Therefore, novel ways to prevent insulin resistance and type 2 diabetes are urgently needed. The roots of Scutellaria radix are commonly used in traditional Chinese medicines for prevention and treatment of type 2 diabetes, atherosclerosis, hypertension, hyperlipidemia, dysentery, and other respiratory disorders. Baicalin and baicalein are the major and active ingredient extracts from Scutellaria baicalensis.

Methods

A comprehensive and systematic review of literature on baicalin and baicalein was carried out.

Results

Emerging evidence indicated that baicalin and baicalein possessed hepatoprotective, anti-oxidative, anti-dyslipidemic, anti-lipogenic, anti-obese, anti-inflammatory, and anti-diabetic effects, being effective for treating obesity, insulin resistance, non-alcoholic fatty liver, and dyslipidemia. Besides, baicalin and baicalein are almost non-toxic to epithelial, peripheral, and myeloid cells.

Conclusion

The purpose of this study is to focus on the therapeutic applications and accompanying molecular mechanisms of baicalin and baicalein against hyperglycemia, insulin resistance, type 2 diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver, and trying to establish a novel anti-obese and anti-diabetic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AST:

Aspartate aminotransferase

ALT:

Glutamic pyruvic transaminase

AUC:

Areas under the curve

CREB:

cAMP-responsive element binding protein

CHO:

Cholesterol

G6Pase:

Glucose-6-phosphate

GTT:

Glucose tolerance test

HNF4a:

Hepatocyte nuclear factor 4-alpha

ITT:

Insulin tolerance test

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

PGC-1α:

Peroxisome proliferator-activated receptor gamma co-activator-1α

PEPCK:

Phosphoenolpyruvate carboxykinase

P38MAPK:

P38 mitogen-activated protein kinase

SR:

Scutellariae radix

SIRT1:

Sirtuin 1

SIRT6:

Sirtuin 6

TG:

Triglyceride

References

  1. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515–23.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    Article  PubMed  Google Scholar 

  4. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310(9):948–59.

    Article  CAS  PubMed  Google Scholar 

  5. Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510(7503):84–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao Q, Yang J, Cui MY, Liu J, Fang Y, Yan M, et al. The Reference Genome Sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis. Mol Plant. 2019. https://doi.org/10.1016/j.molp.2019.04.002.

    Article  PubMed  Google Scholar 

  7. de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM. The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res. 2015;100:296–308.

    Article  PubMed  CAS  Google Scholar 

  8. Xi Y, Wu M, Li H, Dong S, Luo E, Gu M, et al. Baicalin attenuates high fat diet-induced obesity and liver dysfunction: dose-response and potential role of CaMKKβ/AMPK/ACC pathway. Cell Physiol Biochem. 2015;35:2349–59.

    Article  CAS  PubMed  Google Scholar 

  9. Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem. 2017;131:68–80.

    Article  CAS  PubMed  Google Scholar 

  10. Waisundara VY, Hsu A, Tan BK, Huang D. Baicalin improves antioxidant status of streptozotocin-induced diabetic Wistar rats. J Agric Food Chem. 2009;57(10):4096–102.

    Article  CAS  PubMed  Google Scholar 

  11. Li HB, Chen F. Isolation and purification of baicalein, wogonin and oroxylin a from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. J Chromatogr A. 2005;1074:107–10.

    Article  CAS  PubMed  Google Scholar 

  12. Waisundara VY, Hsu A, Tan BK, Huang D. Baicalin reduces mitochondrial damage in streptozotocin-induced diabetic Wistar rats. Diabetes Metab Res Rev. 2009;25(7):671–7.

    Article  CAS  PubMed  Google Scholar 

  13. Malecki MT. Type 2 diabetes mellitus and its complications: from the molecular biology to the clinical practice. Rev Diabet Stud. 2004;1:5–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013;152:673–84.

    Article  CAS  PubMed  Google Scholar 

  15. Denley A, Carroll JM, Brierley GV, Cosgrove L, Wallace J, Forbes B, et al. Differential activation of insulin receptor substrates 1 and 2 by insulin-like growth factor-activated insulin receptors. Mol Cell Biol. 2007;27(10):3569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khan AH, Pessin JE. Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia. 2002;45:1475–83.

    Article  CAS  PubMed  Google Scholar 

  17. Tonks KT, Ng Y, Miller S, Coster AC, Samocha-Bonet D, Iseli TJ, et al. Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects. Diabetologia. 2013;56(4):875–85.

    Article  CAS  PubMed  Google Scholar 

  18. Thong FS, Bilan PJ, Klip A. The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes. 2007;56:414–23.

    Article  CAS  PubMed  Google Scholar 

  19. Augustin R. The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life. 2010;62:315–33.

    CAS  PubMed  Google Scholar 

  20. Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol. 2012;13:383–96.

    Article  CAS  PubMed  Google Scholar 

  21. Bogan JS, Hendon N, McKee AE, Tsao TS, Lodish HF. Functional cloning of TUG as regulator of GLUT4 glucose transporter trafficking. Nature. 2003;425(6959):727–33.

    Article  CAS  PubMed  Google Scholar 

  22. Geiger PC, Han DH, Wright DC, Holloszy JO. How muscle insulin sensitivity is regulated: testing of a hypothesis. Am J Physiol Endocrinol Metab. 2006;291(6):E1258–63.

    Article  CAS  PubMed  Google Scholar 

  23. Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res. 2012;53:709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mikłosz A, Łukaszuk B, Żendzian-Piotrowska M, Brańska-Januszewska J, Ostrowska H, Chabowski A. Challenging of AS160/TBC1D4 alters intracellular lipid milieu in L6 myotubes incubated with palmitate. J Cell Physiol. 2017;232(9):2373–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol. 2008;295:E29–37.

    Article  CAS  Google Scholar 

  26. Oak SA, Tran C, Pan G, Thamotharan M, Devaskar SU. Perturbed skeletal muscle insulin signaling in the adult female intrauterine growth-restricted rat. Am J Physiol Endocrinol Metab. 2006;290:E1321–30.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Sheng S, Guo L, Li G, Zhang L, Zhang L, et al. Intracerebroventricular administration of galanin antagonist sustains insulin resistance in adipocytes of type 2 diabetic trained rats. Mol Cell Endocrinol. 2012;361(1–2):213–8.

    Article  CAS  PubMed  Google Scholar 

  28. Qi L, Hu FB, Hu G. Genes, environment, and interactions in prevention of type 2 diabetes: a focus on physical activity and lifestyle changes. Curr Mol Med. 2008;8:519–32.

    Article  CAS  PubMed  Google Scholar 

  29. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    Article  CAS  PubMed  Google Scholar 

  30. Adler AI, Shaw EJ, Stokes T, Ruiz F. Guideline development group. Newer agents for blood glucose control in type 2 diabetes: summary of NICE guidance. BMJ. 2009;338:b1668.

    Article  PubMed  Google Scholar 

  31. Fang P, Shi M, Zhu Y, Bo P, Zhang Z. Type 2 diabetes mellitus as a disorder of galanin resistance. Exp Gerontol. 2016;73:72–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lee H, Kang R, Hahn Y, Yang Y, Kim SS, Cho SH, et al. Antiobesity effect of baicalin involves the modulations of proadipogenic and antiadipogenic regulators of the adipogenesis pathway. Phytother Res. 2009;23(11):1615–23.

    Article  CAS  PubMed  Google Scholar 

  33. Yang LL, Xiao N, Liu J, Liu K, Liu B, Li P, et al. Differential regulation of baicalin and scutellarin on AMPK and Akt in promoting adipose cell glucose disposal. Biochim Biophys Acta. 2017;1863:598–606.

    Article  CAS  Google Scholar 

  34. Hang Y, Qin X, Ren T, Cao J. Baicalin reduces blood lipids and inflammation in patients with coronary artery disease and rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis. 2018;17(1):146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Waisundara VY, Siu SY, Hsu A, Huang D, Tan BK. Baicalin upregulates the genetic expression of antioxidant enzymes in Type-2 diabetic Goto-Kakizaki rats. Life Sci. 2011;88(23–24):1016–25.

    Article  CAS  PubMed  Google Scholar 

  36. Guo HX, Liu DH, Ma Y, Liu JF, Wang Y, Du ZY, et al. Long-term baicalin administration ameliorates metabolic disorders and hepatic steatosis in rats given a high-fat diet. Acta Pharmacol Sin. 2009;30(11):1505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu Y, Wang F, Fan L, Zhang W, Wang T, Du Y, et al. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways. Biomed Pharmacother. 2018;97:1673–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu D, Wang S, Lawless J, He J, Zheng Z. Dose dependent dual effect of baicalin and herb Huang Qin extract on angiogenesis. PLoS ONE. 2016;11:e0167125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fang P, Yu M, Zhang L, Wan D, Shi M, Zhu Y, et al. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol. 2017;448:77–86.

    Article  CAS  PubMed  Google Scholar 

  40. Fang P, Yu M, Min W, Han S, Shi M, Zhang Z, et al. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. Diabetes Res Clin Pract. 2018;139:262–71.

    Article  CAS  PubMed  Google Scholar 

  41. Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018;27(1):22–41.

    Article  CAS  PubMed  Google Scholar 

  42. Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012;15(5):665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao W, Liu L, Wang Y, Mao T, Li J. Effects of a combination of puerarin, baicalin and berberine on the expression of proliferator-activated receptor-γ and insulin receptor in a rat model of nonalcoholic fatty liver disease. Exp Ther Med. 2016;11(1):183–90.

    Article  CAS  PubMed  Google Scholar 

  44. Zhong X, Liu H. Baicalin attenuates diet induced nonalcoholic steatohepatitis by inhibiting inflammation and oxidative stress via suppressing JNK signaling pathways. Biomed Pharmacother. 2018;98:111–7.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Liu M, Yu H, Li J, Wang S, Zhang Y, et al. Scutellaria baicalensis regulates FFA metabolism to ameliorate NAFLD through the AMPK-mediated SREBP signaling pathway. J Nat Med. 2018;72(3):655–66.

    Article  CAS  PubMed  Google Scholar 

  46. Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci USA. 2018;115(26):E5896–905.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Zhang J, Zhang H, Deng X, Zhang N, Liu B, Xin S, et al. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice. Life Sci. 2018;192:46–54.

    Article  CAS  PubMed  Google Scholar 

  48. Sheng X, Wang J, Guo J, Xu Y, Jiang H, Zheng C, et al. Effects of baicalin on diabetic cardiac autonomic neuropathy mediated by the P2Y12 receptor in rat stellate ganglia. Cell Physiol Biochem. 2018;46(3):986–98.

    Article  CAS  PubMed  Google Scholar 

  49. Sun F, Gu W. Baicalin attenuates collagen-induced arthritis via inhibition of JAK2-STAT3 signaling and regulation of Th17 cells in mice. J Cell Commun Signal. 2018. https://doi.org/10.1007/s12079-018-0475-1.

  50. Fu Y, Luo J, Jia Z, Zhen W, Zhou K, Gilbert E, et al. Baicalein protects against type 2 diabetes via promoting islet β-cell function in obese diabetic mice. Int J Endocrinol. 2014;2014:846742.

    PubMed  PubMed Central  Google Scholar 

  51. Faulkner J, Pye C, Al-Shabrawey M, Elmarakby AA. Inhibition of 12/15-lipoxygenase reduces renal inflammation and injury in streptozotocin-induced diabetic mice. J Diabetes Metab. 2015;6(6):555.

    PubMed  PubMed Central  Google Scholar 

  52. Ku SK, Bae JS. Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo. BMB Rep. 2015;48(9):519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qi Z, Xu Y, Liang Z, Li S, Wang J, Wei Y, et al. Baicalein alters PI3K/Akt/GSK3β signaling pathway in rats with diabetes-associated cognitive deficits. Int J Clin Exp Med. 2015;8:1993–2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pu P, Wang XA, Salim M, Zhu LH, Wang L, Chen KJ, et al. Baicalein, a natural product, selectively activating AMPKα(2) and ameliorates metabolic disorder in diet-induced mice. Mol Cell Endocrinol. 2012;362(1–2):128–38.

    Article  CAS  PubMed  Google Scholar 

  55. Cao H, Li S, Xie R, Xu N, Qian Y, Chen H, et al. Exploring the mechanism of dangguiliuhuang decoction against hepatic fibrosis by net work pharmacology and experimental validation. Front Pharmacol. 2018;9:187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nakao Y, Yoshihara H, Fujimori K. Suppression of very early stage of adipogenesis by baicalein, a plant-derived flavonoid through reduced Akt-C/EBPα-GLUT4 signaling-mediated glucose uptake in 3T3-L1 adipocytes. PLoS ONE. 2016;11:e0163640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mangal P, Khare P, Jagtap S, Bishnoi M, Kondepudi KK, Bhutani KK. Screening of six ayurvedic medicinal plants for anti-obesity potential: an investigation on bioactive constituents from Oroxylum indicum (L.) Kurz bark. J Ethnopharmacol. 2017;197:138–46.

    Article  CAS  PubMed  Google Scholar 

  58. Hao M, Li Y, Liu L, Yuan X, Gao Y, Guan Z, et al. The design and synthesis of a novel compound of berberine and baicalein that inhibits the efficacy of lipid accumulation in 3T3-L1 adipocytes. Bioorg Med Chem. 2017;25(20):5506–12.

    Article  CAS  PubMed  Google Scholar 

  59. Min W, Wu M, Fang P, Yu M, Shi M, Zhang Z, et al. Effect of baicalein on GLUT4 translocation in adipocytes of diet-induced obese mice. Cell Physiol Biochem. 2018;50:426–36.

    Article  CAS  PubMed  Google Scholar 

  60. Xi YL, Li HX, Chen C, Liu YQ, Lv HM, Dong SQ, et al. Baicalin attenuates high fat diet-induced insulin resistance and ectopic fat storage in skeletal muscle, through modulating the protein kinase B/Glycogen synthase kinase 3 beta pathway. Chin J Nat Med. 2016;14:48–55.

    PubMed  Google Scholar 

  61. Li HT, Wu XD, Davey AK, Wang J. Antihyperglycemic effects of baicalin on streptozotocin—nicotinamide induced diabetic rats. Phytother Res. 2011;25(2):189–94.

    PubMed  Google Scholar 

  62. Shi F, Wei Z, Zhao Y, Xu X. Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag. 2016;12:198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Han S, Oh KS, Yoon Y, Park JS, Park YS, Han JH, et al. Herbal extract THI improves metabolic abnormality in mice fed a high-fat diet. Nutr Res Pract. 2011;5(3):198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang G, Liang J, Gao LR, Si ZP, Zhang XT, Liang G, et al. Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system. Cell Death Dis. 2018;9(2):234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han K, Bose S, Wang JH, Lim SK, Chin YW, Kim YM, et al. In vivo therapeutic effect of combination treatment with metformin and Scutellaria baicalensis on maintaining bile acid homeostasis. PLoS ONE. 2017;12(9):e0182467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang XJ, Liu S, Xing JP, Liu ZQ, Song FR. Effect of type 2 diabetes mellitus on flavonoid pharmacokinetics and tissue distribution after oral administration of Radix Scutellaria extract in rats. Chin J Nat Med. 2018;16(6):418–27.

    PubMed  Google Scholar 

  67. Liu SZ, Deng YX, Chen B, Zhang XJ, Shi QZ, Qiu XM. Antihyperglycemic effect of the traditional Chinese scutellaria-coptis herb couple and its main components in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2013;145(2):490–8.

    Article  CAS  PubMed  Google Scholar 

  68. You W, Wang K, Yu C, Song L. Baicalin prevents tumor necrosis factor-α-induced apoptosis and dysfunction of pancreatic β-cell line Min6 via upregulation of miR-205. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.27095.

  69. Zhang CH, Yu RY, Liu YH, Tu XY, Tu J, Wang YS, et al. Interaction of baicalin with berberine for glucose uptake in 3T3-L1 adipocytes and HepG2 hepatocytes. J Ethnopharmacol. 2014;151:864–72.

    Article  CAS  PubMed  Google Scholar 

  70. Wang T, Jiang H, Cao S, Chen Q, Cui M, Wang Z, et al. Baicalin and its metabolites suppresses gluconeogenesis through activation of AMPK or AKT in insulin resistant HepG-2 cells. Eur J Med Chem. 2017;141:92–100.

    Article  CAS  PubMed  Google Scholar 

  71. Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.

    Article  CAS  PubMed  Google Scholar 

  72. Farese RV Jr, Zechner R, Newgard CB, Walther TC. The problem of establishing relationships between hepatic steatosis and hepatic insulinresistance. Cell Metab. 2012;15(5):570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harwood HJ Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology. 2012;63(1):57–75.

    Article  CAS  PubMed  Google Scholar 

  74. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med. 2000;6:924–8.

    Article  CAS  PubMed  Google Scholar 

  75. Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med. 1997;3:1096–101.

    Article  CAS  PubMed  Google Scholar 

  76. Wallberg-Henriksson H, Zierath JR. GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review). Mol Membr Biol. 2001;18:205–11.

    Article  CAS  PubMed  Google Scholar 

  77. Fang P, Yu M, Min W, Wan D, Han S, Shan Y, et al. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sci. 2018;196:156–61.

    Article  CAS  PubMed  Google Scholar 

  78. Kuo YT, Lin CC, Kuo HT, Hung JH, Liu CH, Jassey A, et al. Identification of baicalin from Bofutsushosan and Daisaikoto as a potent inducer of glucose uptake and modulator of insulin signaling-associated pathways. J Food Drug Anal. 2018. Epub 2018 Aug 14.

  79. Keshari AK, Kumar G, Kushwaha PS, Bhardwaj M, Kumar P, Rawat A, et al. Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. J Ethnopharmacol. 2016;181:252–62.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang BW, Li X, Sun WL, Xing Y, Xiu ZL, Zhuang CL, et al. Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose. J Agric Food Chem. 2017;65(38):8319–30.

    Article  CAS  PubMed  Google Scholar 

  81. Sun W, Sang Y, Zhang B, Yu X, Xu Q, Xiu Z, et al. Synergistic effects of acarbose and an Oroxylum indicum seed extract in streptozotocin and high-fat-diet induced prediabetic mice. Biomed Pharmacother. 2017;87:160–70.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang BW, Sang YB, Sun WL, Yu HS, Ma BP, Xiu ZL, et al. Combination of flavonoids from Oroxylum indicum seed extracts and acarbose improves the inhibition of postprandial blood glucose: in vivo and in vitro study. Biomed Pharmacother. 2017;91:890–8.

    Article  CAS  PubMed  Google Scholar 

  83. Yang Z, Huang W, Zhang J, Xie M, Wang X. Baicalein improves glucose metabolism in insulin resistant HepG2 cells. Eur J Pharmacol. 2019;854:187–93.

    Article  CAS  PubMed  Google Scholar 

  84. Hirai T, Nomura K, Ikai R, Nakashima KI, Inoue M. Baicalein stimulates fibroblast growth factor 21 expression by up-regulating retinoic acid receptor-related orphan receptor α in C2C12 myotubes. Biomed Pharmacother. 2018;2109:503–10.

    Google Scholar 

  85. El-Bassossy HM, Hassan NA, Mahmoud MF, Fahmy A. Baicalein protects against hypertension associated with diabetes: effect on vascular reactivity and stiffness. Phytomedicine. 2014;21(12):1742–5.

    Article  CAS  PubMed  Google Scholar 

  86. Ha TK, Hansen AH, Kol S, Kildegaard HF, Lee GM. Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity. Biotechnol J. 2018;13(3):e1700425.

    Article  PubMed  CAS  Google Scholar 

  87. Ahad A, Mujeeb M, Ahsan H, Siddiqui WA. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie. 2014;106:101–10.

    Article  CAS  PubMed  Google Scholar 

  88. Stavniichuk R, Drel VR, Shevalye H, Maksimchyk Y, Kuchmerovska TM, Nadler JL, et al. Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation. Exp Neurol. 2011;230(1):106–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang S, Zhang Y, Shen F, Ma X, Zhang M, Hou Y, et al. The flavonoid baicalin improves glucose metabolism by targeting the PH domain of AKT and activating AKT/GSK3β phosphorylation. FEBS Lett. 2018. https://doi.org/10.1002/1873-3468.13305.

  90. Xu J, Li Y, Lou M, Xia W, Liu Q, Xie G, et al. Baicalin regulates SirT1/STAT3 pathway and restrains excessive hepatic glucose production. Pharmacol Res. 2018;136:62–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all co-authors of their papers that have been reviewed here.

Funding

This work was supported by the National Natural Scientific Fund of China (Nos. 81673736; 81803792) and the Natural Scientific Fund of Jiangsu (No. BK20171319) and Qing Lan Project of Jiangsu.

Author information

Authors and Affiliations

Authors

Contributions

FP, YM, ZZ, GX and BP contributed equally to the preparation of the manuscript. Each author has approved the final version of the manuscript.

Corresponding author

Correspondence to Zhenwen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, P., Yu, M., Shi, M. et al. Baicalin and its aglycone: a novel approach for treatment of metabolic disorders. Pharmacol. Rep 72, 13–23 (2020). https://doi.org/10.1007/s43440-019-00024-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00024-x

Keywords

Navigation