Skip to main content
Log in

Metabolic engineering of Corynebacterium glutamicum CGY-PG-304 for promoting gamma-aminobutyric acid production

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid is a versatile and non-protein amino acid that plays a significant role in medicine, food, and cosmetics. The synthesis of gamma-aminobutyric acid is restricted by complex metabolic mechanisms and suboptimal fermentation conditions. Previously, we had constructed the Corynebacterium glutamicum strain CGY-PG-304 which could efficiently produce gamma-aminobutyric acid. In this study, we promoted gamma-aminobutyric acid production in CGY-PG-304 by enhancing the carbon flow in the TCA cycle, streamlining the mycolic acid layer of the cell wall, and optimizing the fermentation conditions. First, the genes sucCD encoding succinyl coenzyme A synthase, the gene cmrA encoding the ketoacyl reductase, and the gene treY encoding maltooligosaccharyl trehalose synthase were deleted in CGY-PG-304 individually or in combination. The yield of gamma-aminobutyric acid was increased in all the resulting strains among which CGW003 was the best. Next, the gene acnA encoding cis-aconitase or the gltS encoding sodium-coupled glutamate secondary uptake system were overexpressed in CGW003 using plasmid, and the former produced more gamma-aminobutyric acid than the latter. Therefore, the promoter of the chromosomal gene acnA in CGW003 was replaced by the strong promoter PtacM, resulting in the final strain CGW005. CGW005 could produce 112.03 g/L of gamma-aminobutyric acid with a yield of 0.34 g/g of glucose by fed-batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H. Relaxation and immunity enhancement effects of γ-Aminobutyric acid (GABA) administration in humans. BioFactors. 2006;263:201–8. https://doi.org/10.1002/biof.5520260305.

    Article  Google Scholar 

  2. Xu M, Gao H, Ma Z, Han J, Zheng K, Shao M, Rao Z. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Amino Acids. 2022;5411:1437–50. https://doi.org/10.1007/s00726-022-03174-0.

    Article  CAS  Google Scholar 

  3. Yamano N, Kawasaki N, Takeda S, Nakayama A. Production of 2-pyrrolidone from biobased glutamate by using Escherichia coli. J Polym Environ. 2012;212:528–33. https://doi.org/10.1007/s10924-012-0466-x.

    Article  CAS  Google Scholar 

  4. Ansar M, Bakkas S, Taoufik J, Ebrik SAA, Berthelot P. Synthesis of new N-substituted pyrrolidin-2-ones as cyclic analog of gamma-aminobutyric acid. Ann Pharm Fr. 2001;591:40–50.

    Google Scholar 

  5. Jorge JM, Nguyen AQ, Perez-Garcia F, Kind S, Wendisch VF. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng. 2017;1144:862–73. https://doi.org/10.1002/bit.26211.

    Article  CAS  Google Scholar 

  6. Yao C, Hu X, Wang X. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum. AMB Express. 2021;111:1–15. https://doi.org/10.1186/s13568-021-01231-7.

    Article  CAS  Google Scholar 

  7. Qin T, Hu X, Hu J, Wang X. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce l-methionine. Biotechnol Appl Biochem. 2015;624:563–73. https://doi.org/10.1002/bab.1290.

    Article  CAS  Google Scholar 

  8. Wang X, Zhang H, Quinn P. Production of l-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2018;10210:4319–30. https://doi.org/10.1007/s00253-018-8952-2.

    Article  CAS  Google Scholar 

  9. Dong X, Zhao Y, Hu J, Li Y, Wang X. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Enzyme Microb Technol. 2016;93–94:70–8. https://doi.org/10.1016/j.enzmictec.2016.07.013.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Liu Y, Zhang S, Ma W, Wang J, Yin L, Wang X. Metabolic engineering of Corynebacterium glutamicum WM001 to improve l-isoleucine production. Biotechnol Appl Biochem. 2021;683:568–84. https://doi.org/10.1002/bab.1963.

    Article  CAS  Google Scholar 

  11. Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol. 2012;513:171–6. https://doi.org/10.1016/j.enzmictec.2012.05.010.

    Article  CAS  Google Scholar 

  12. Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact. 2015;141:21. https://doi.org/10.1186/s12934-015-0205-9.

    Article  CAS  Google Scholar 

  13. Baritugo KA, Kim HT, David Y, Khang TU, Hyun SM, Kang KH, Yu JH, Choi JH, Song JJ, Joo JC, Park SJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb Cell Fact. 2018;171:129. https://doi.org/10.1186/s12934-018-0977-9.

    Article  CAS  Google Scholar 

  14. Okai N, Takahashi C, Hatada K, Ogino C, Kondo A. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express. 2014;41:20. https://doi.org/10.1186/s13568-014-0020-4.

    Article  CAS  Google Scholar 

  15. Zhou Z, Wang C, Xu H, Chen Z, Cai H. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. J Ind Microbiol Biotechnol. 2015;427:1073–82. https://doi.org/10.1007/s10295-015-1630-9.

    Article  CAS  Google Scholar 

  16. Zhao A, Hu X, Wang X. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol. 2017;1019:3587–603. https://doi.org/10.1007/s00253-017-8162-3.

    Article  CAS  Google Scholar 

  17. Shi F, Zhang M, Li Y. Overexpression of ppc or deletion of mdh for improving production of gamma-aminobutyric acid in recombinant Corynebacterium glutamicum. World J Microbiol Biotechnol. 2017;336:122. https://doi.org/10.1007/s11274-017-2289-3.

    Article  CAS  Google Scholar 

  18. Yao C, Shi F, Wang X. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid. Biotechnol Appl Biochem. 2023;701:7–21. https://doi.org/10.1002/bab.2324.

    Article  CAS  Google Scholar 

  19. Zhang Y, Song L, Gao Q, Yu S, Li L, Gao N. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol. 2012;946:1619–27. https://doi.org/10.1007/s00253-012-3868-8.

    Article  CAS  Google Scholar 

  20. Sun L, Baias Y, Zhang X, Zhou C, Zhang J, Su X, Luo H, Yao B, Wang Y, Tu T. Characterization of three glutamate decarboxylases from Bacillus spp. for efficient gamma-aminobutyric acid production. Microb Cell Fact. 2021;201:153. doi:https://doi.org/10.1186/s12934-021-01646-8.

  21. Xiong Q, Xu Z, Xu L, Yao Z, Li S, Xu H. Efficient production of gamma-GABA using recombinant E. coli expressing glutamate gecarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae. Appl Biochem Biotechnol 2017;1834:1390–1400. doi:https://doi.org/10.1007/s12010-017-2506-4.

  22. Gebhardt H, Meniche X, Tropis M, Krämer R, Daffé M, Morbach S. The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology. 2007;1535:1424–34. https://doi.org/10.1099/mic.0.2006/003541-0.

    Article  CAS  Google Scholar 

  23. Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L. Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits l-glutamate efflux of Corynebacterium glutamicum. Microbiology-Sgm. 2005;151:1359–68. https://doi.org/10.1099/mic.0.27804-0.

    Article  CAS  Google Scholar 

  24. Lanéelle MA, Tropis M, Daffé M. Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol. 2013;9723:9923–30. https://doi.org/10.1007/s00253-013-5265-3.

    Article  CAS  Google Scholar 

  25. Klatt S, Brammananth R, O’Callaghan S, Kouremenos KA, Tull D, Crellin PK, Coppel RL, McConville MJ. Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry. J Lipid Res. 2018;597:1190–204. https://doi.org/10.1194/jlr.M082784.

    Article  Google Scholar 

  26. Li H, Xu D, Zhang D, Tan X, Huang D, Ma W, Zhao G, Li Y, Liu Z, Wang Y, Hu X, Wang X. Improve l-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol Res. 2023;272: 127390. https://doi.org/10.1016/j.micres.2023.127390.

    Article  CAS  PubMed  Google Scholar 

  27. Hu J, Tan Y, Li Y, Hu X, Wang X. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid. 2013;703:303–13. https://doi.org/10.1016/j.plasmid.2013.07.001.

    Article  CAS  Google Scholar 

  28. Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T. Model-guided metabolic rewiring for gamma-aminobutyric acid and butyrolactam biosynthesis in Corynebacterium glutamicum ATCC13032. Biology (Basel). 2022;116:846. https://doi.org/10.3390/biology11060846.

    Article  CAS  Google Scholar 

  29. Trötschel C, Kandirali S, Diaz-Achirica P, Meinhardt A, Morbach S, Krämer R, Burkovski A. GltS, the sodium-coupled l-glutamate uptake system of Corynebacterium glutamicum: identification of the corresponding gene and impact on l-glutamate production. Appl Microbiol Biotechnol. 2003;606:738–42. https://doi.org/10.1007/s00253-002-1170-x.

    Article  CAS  Google Scholar 

  30. Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of gamma-aminobutyric acid and its precursor l-glutamate in recombinant Corynebacterium glutamicum. Biotech Lett. 2015;377:1473–81. https://doi.org/10.1007/s10529-015-1822-4.

    Article  ADS  CAS  Google Scholar 

  31. Schultz C, Niebisch A, Gebel L, Bott M. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol. 2007;763:691–700. https://doi.org/10.1007/s00253-007-0933-9.

    Article  CAS  Google Scholar 

  32. Lea-Smith DJ, Pyke JS, Tull D, McConville MJ, Coppel RL, Crellin PK. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J Biol Chem. 2007;28215:11000–8. https://doi.org/10.1074/jbc.M608686200.

    Article  CAS  Google Scholar 

  33. Li H, Xu D, Liu Y, Tan X, Qiao J, Li Z, Qi B, Hu X, Wang X. Preventing mycolic acid reduction in Corynebacterium glutamicum can efficiently increase l-glutamate production. Biochem Eng J. 2022;177: 108255. https://doi.org/10.1016/j.bej.2021.108255.

    Article  CAS  Google Scholar 

  34. Shi F, Xie Y, Jiang J, Wang N, Li Y, Wang X. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb Technol. 2014;61–62:35–43. https://doi.org/10.1016/j.enzmictec.2014.04.012.

    Article  CAS  PubMed  Google Scholar 

  35. Delaunay S, Lapujade P, Engasser JM, Goergen JL. Flexibility of the metabolism of Corynebacterium glutamicum 2262, a glutamic acid-producing bacterium, in response to temperature upshocks. J Ind Microbiol Biotechnol. 2002;286:333–7. https://doi.org/10.1038/sj/jim/7000251.

    Article  CAS  Google Scholar 

  36. Xu N, Wei L, Liu J. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J Microbiol Biotechnol. 2017;333:64. https://doi.org/10.1007/s11274-017-2234-5.

    Article  CAS  Google Scholar 

  37. Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol. 2003;1041–3:287–99. https://doi.org/10.1016/s0168-1656(03)00148-2.

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Key Research and Development Program of China (2021YFC2100900).

Author information

Authors and Affiliations

Authors

Contributions

YW and XW conceived and designed the research. YW, CY, DH, HL, YL, ZL, and BZ conducted experiments. YW, XH, and XW analyzed the data and wrote the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Xiaoyuan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yao, C., Huang, D. et al. Metabolic engineering of Corynebacterium glutamicum CGY-PG-304 for promoting gamma-aminobutyric acid production. Syst Microbiol and Biomanuf (2024). https://doi.org/10.1007/s43393-024-00236-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43393-024-00236-0

Keywords

Navigation