Skip to main content
Log in

Characterization and implications of prokaryotic ribosome-binding sites across species

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The ribosome-binding site (RBS) in the 5′ untranslated region is recognized by 16S rRNA to start translation and is an essential element of the gene expression system. RBSs have been widely applied in regulating gene expression in various scenarios, including Gram-negative or Gram-positive bacteria. Here, we first rationally designed and constructed an RBS mutant library containing 66 RBSs. The strength of these RBSs in E. coli and C. glutamicum was characterized individually. The RBS strength spanned about 200 and 15 times in the two species, respectively. The strength of RBSs in C. glutamicum was generally lower than that of in E. coli. A total of 18 RBSs showed similar strength (within twofold differences) between the species in our study, and the correlation analysis of the strength of RBSs between E. coli and C. glutamicum (R2 = 0.7483) revealed that these RBSs can be used across species. The sequence analysis revealed that the RBS region with two Ts stated was beneficial for RBS to function cross-species. The RBS characterized here can be used to precisely regulate gene expression in both hosts, and the characteristics of cross-species RBSs provide basic information for RBS rational design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steitz JA. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature. 1969;224(5223):957–64.

    Article  CAS  Google Scholar 

  2. Shine J, Dalgarno L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA. 1974;71(4):1342–6.

    Article  CAS  Google Scholar 

  3. Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, et al. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol. 1992;6(9):1219–29.

    Article  CAS  Google Scholar 

  4. Vellanoweth RL, Rabinowitz JC. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol. 1992;6(9):1105–11014.

    Article  CAS  Google Scholar 

  5. Chen HY, Bjerknes M, Kumar R, Jay E. Determination of the optimal aligned spacing between the Shine–Dalgarno sequence and the translation initiation codon of Escherichia coli mRNA. Nucleic Acids Res. 1994;22(23):4953–7.

    Article  CAS  Google Scholar 

  6. Tuller T, Waldman YY, Kupiec M, Ruppin E. Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA. 2010;107(8):3645–50.

    Article  CAS  Google Scholar 

  7. Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA, et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods. 2013;10(4):354–61.

    Article  CAS  Google Scholar 

  8. Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009;324(5924):255–8.

    Article  CAS  Google Scholar 

  9. Bhattacharyya S, Jacobs WM, Adkar BV, Yan J, Zhang WL, Shakhnovich EI. Accessibility of the Shine–Dalgarno sequence dictates N-terminal codon bias in Escherichia coli. Mol Cell. 2018;70(5):894–905.

    Article  CAS  Google Scholar 

  10. Hall MN, Gabay J, Debarbouille M, Schwartz M. A role for mRNA secondary structure in the control of translation initiation. Nature. 1982;295(5850):616–28.

    Article  CAS  Google Scholar 

  11. Goodman DB, Church GM, Kosuri S. Causes and effects of N-terminal codon bias in bacterial genes. Science. 2013;342(6157):475–9.

    Article  CAS  Google Scholar 

  12. Zelcbuch L, Antonovsky N, Bar-Even A, Levin-Karp A, Barenholz U, Dayagi M, et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res. 2013;41(9): e98.

    Article  CAS  Google Scholar 

  13. Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact. 2014;13:104.

    PubMed  PubMed Central  Google Scholar 

  14. Li Y, Gu Q, Lin Z, Wang Z, Chen T, Zhao X. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences. ACS Synth Biol. 2013;2(11):651–61.

    Article  CAS  Google Scholar 

  15. Zhang B, Zhou N, Liu Y-M, Liu C, Lou C-B, Jiang C-Y, et al. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb Cell Fact. 2015;14(1):71.

    Article  Google Scholar 

  16. Shi F, Luan M, Li Y. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing gamma-aminobutyrate in Corynebacterium glutamicum. AMB Express. 2018;8(1):61.

    Article  Google Scholar 

  17. Pátek M, Nešvera J, Guyonvarch A, Reyes O, Leblon G. Promoters of Corynebacterium glutamicum. J Biotechnol. 2003;104(1–3):311–23.

    Article  Google Scholar 

  18. Zhang XM, Xu GQ, Shi JS, Koffas MAG, Xu ZH. Microbial production of l-serine from renewable feedstocks. Trends Biotechnol. 2018;36(7):700–12.

    Article  CAS  Google Scholar 

  19. Yang S, Liu Q, Zhang Y, Du G, Chen J, Kang Z. Construction and characterization of broad-spectrum promoters for synthetic biology. ACS Synth Biol. 2018;7(1):287–91.

    Article  CAS  Google Scholar 

  20. Cui W, Lin Q, Hu R, Han L, Cheng Z, Zhang L, et al. Data-driven and in silico-assisted design of broad host-range minimal intrinsic terminators adapted for bacteria. ACS Synth Biol. 2021;10(6):1438–50.

    Article  CAS  Google Scholar 

  21. Patek M, Nesvera J. Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol. 2011;154(2–3):101–13.

    Article  CAS  Google Scholar 

  22. Duan Y, Zhai W, Liu W, Zhang X, Shi JS, Zhang X, et al. Fine-tuning multi-gene clusters via well-characterized gene expression regulatory elements: case study of the arginine synthesis pathway in Corynebacterium glutamicum. ACS Synth Biol. 2021;10(1):38–48.

    Article  Google Scholar 

  23. Martin JF, Barreiro C, González-Lavado E, Barriuso M. Ribosomal RNA and ribosomal proteins in corynebacteria. J Biotechnol. 2003;104(1–3):41–53.

    Article  CAS  Google Scholar 

  24. Miller JH. Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory Press; 1972. p. 431.

    Google Scholar 

  25. Evfratov SA, Osterman IA, Komarova ES, Pogorelskaya AM, Rubtsova MP, Zatsepin TS, et al. Application of sorting and next generation sequencing to study 5-UTR influence on translation efficiency in Escherichia coli. Nucleic Acids Res. 2017;45(6):3487–502.

    Article  CAS  Google Scholar 

  26. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–1090.

    Article  CAS  Google Scholar 

  27. Xu D, Tan Y, Li Y, Wang X. Construction of a novel promoter-probe vector and its application for screening strong promoter for Brevibacterium flavum metabolic engineering. World J Microbiol Biotechnol. 2011;27(4):961–8.

    Article  CAS  Google Scholar 

  28. Vasicová P, Pátek M, Nesvera J, Sahm H, Eikmanns B. Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol. 1999;181(19):6188–91.

    Article  Google Scholar 

  29. Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics. 2013;14:888.

    Article  Google Scholar 

  30. Lee JY, Lee HJ, Seo J, Kim ES, Lee HS, Kim P. Artificial oxidative stress-tolerant Corynebacterium glutamicum. AMB Express. 2014;4:1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2018YFA0900300) and the National Natural science foundation of China (32171421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojuan Zhang or Zhenghong Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Zhang, X., Zhai, W. et al. Characterization and implications of prokaryotic ribosome-binding sites across species. Syst Microbiol and Biomanuf 2, 676–684 (2022). https://doi.org/10.1007/s43393-022-00094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00094-8

Keywords

Navigation