Skip to main content

Schmorl’s nodes: demystification road of endplate defects—a critical review

Abstract

Background

Schmorl’s nodes (SN) were the first vertebral endplate defects described. Debate continues about their epidemiology, physiopathology, and clinical significance. The purpose of this work was to summarize and discuss available literature about SN.

Methods

We have searched for relevant papers about SN until April 2020, with 104 articles have been reviewed.

Results

More than half of the available literature described the epidemiological aspects of SN or reported rare clinical presentations and treatment options. The lack of a consensual definition of SN, among other endplate defects, contributed to difficulties in literature results’ interpretation. Summing up, SN is a frequent vertebral defect at the thoracolumbar juncture, with ethnic and gender influence. Lumbar Schmorl’s nodes were frequently associated with disc degenerative disease and back pain. Their physiopathology remains unknown. However, strain energy changes in the spine along with morphological aspects of the vertebra, the genetic background, and the osteoimmunology may constitute possible clues. New SN could be confused in malignancy context with bone metastasis. The literature describes some imaging techniques to differentiate them, avoiding invasive approaches. Treatment options for rare painful presentations remain few with low evidence. Further studies are needed to establish a consensual definition for SN, understand clinical aspects, and provide adequate therapeutic strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of data and materials

Not applicable.

References

  1. 1.

    Junghanns H (1971) The human spine in health and disease, 2nd edn. Grune & Stratton, New York

    Google Scholar 

  2. 2.

    Kyere KA, Than KD, Wang AC et al (2012) Schmorl’s nodes. Eur Spine J 21:2115–2121. https://doi.org/10.1007/s00586-012-2325-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Mattei TA, Rehman AA (2014) Schmorl’s nodes: current pathophysiological, diagnostic, and therapeutic paradigms. Neurosurg Rev 37:39–46. https://doi.org/10.1007/s10143-013-0488-4

    Article  PubMed  Google Scholar 

  4. 4.

    Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35:127–132. https://doi.org/10.1136/ard.35.2.127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rothschild BM, Ho J, Masharawi Y (2014) Macroscopic anatomy of the vertebral endplate: quid significat? Anthropol Anz 71:191–217. https://doi.org/10.1127/0003-5548/2014/0365

    Article  PubMed  Google Scholar 

  6. 6.

    Feng Z, Liu Y, Yang G et al (2018) Lumbar vertebral endplate defects on magnetic resonance images: classification, distribution patterns, and associations with modic changes and disc degeneration. Spine 43:919–927. https://doi.org/10.1097/BRS.0000000000002450

    Article  PubMed  Google Scholar 

  7. 7.

    Chen F-P, Kuo S-F, Lin Y-C et al (2018) Status of bone strength and factors associated with vertebral fracture in postmenopausal women with type 2 diabetes. Menopause. https://doi.org/10.1097/GME.0000000000001185

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zehra U, Bow C, Lotz JC et al (2018) Structural vertebral endplate nomenclature and etiology: a study by the ISSLS Spinal Phenotype Focus Group. Eur Spine J 27:2–12. https://doi.org/10.1007/s00586-017-5292-3

    Article  PubMed  Google Scholar 

  9. 9.

    Lawan A, Leung A, Battié MC (2020) Vertebral endplate defects: nomenclature, classification and measurement methods: a scoping review. Eur Spine J. https://doi.org/10.1007/s00586-020-06378-8

    Article  PubMed  Google Scholar 

  10. 10.

    Samartzis D, Mok FPS, Karppinen J et al (2016) Classification of Schmorl’s nodes of the lumbar spine and association with disc degeneration: a large-scale population-based MRI study. Osteoarthr Cartil 24:1753–1760. https://doi.org/10.1016/j.joca.2016.04.020

    CAS  Article  Google Scholar 

  11. 11.

    Brayda-Bruno M, Albano D, Cannella G et al (2018) Endplate lesions in the lumbar spine: a novel MRI-based classification scheme and epidemiology in low back pain patients. Eur Spine J 27:2854–2861. https://doi.org/10.1007/s00586-018-5787-6

    Article  PubMed  Google Scholar 

  12. 12.

    Zehra U, Flower L, Robson-Brown K et al (2017) Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine J 17:727–737. https://doi.org/10.1016/j.spinee.2017.01.007

    Article  PubMed  Google Scholar 

  13. 13.

    Wang Y, Videman T, Battié MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine 37:1432–1439. https://doi.org/10.1097/BRS.0b013e31824dd20a

    Article  PubMed  Google Scholar 

  14. 14.

    Rajasekaran S, Venkatadass K, Naresh Babu J et al (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs : Results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17:626–643. https://doi.org/10.1007/s00586-008-0645-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rade M, Määttä JH, Freidin MB et al (2018) Vertebral endplate defect as initiating factor in intervertebral disc degeneration: strong association between endplate defect and disc degeneration in the general population. Spine 43:412–419. https://doi.org/10.1097/BRS.0000000000002352

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Munir S, Freidin MB, Rade M et al (2018) Endplate defect is heritable, associated with low back pain and triggers intervertebral disc degeneration: a Longitudinal Study From TwinsUK. Spine 43:1496–1501. https://doi.org/10.1097/BRS.0000000000002721

    Article  PubMed  Google Scholar 

  17. 17.

    Mohty KM, Mandair D, Munroe B et al (2017) A case of persistent low back pain in a young female caused by a trauma-induced Schmorl’s node in the lumbar spine five vertebra. Cureus 9:e1502. https://doi.org/10.7759/cureus.1502

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Seymour R, Williams LA, Rees JI et al (1998) Magnetic resonance imaging of acute intraosseous disc herniation. Clin Radiol 53:363–368. https://doi.org/10.1016/s0009-9260(98)80010-x

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Fahey V, Opeskin K, Silberstein M et al (1998) The pathogenesis of Schmorl’s nodes in relation to acute trauma. An autopsy study. Spine 23:2272–2275. https://doi.org/10.1097/00007632-199811010-00004

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Pfirrmann CW, Resnick D (2001) Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 219:368–374. https://doi.org/10.1148/radiology.219.2.r01ma21368

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Hansson T, Roos B (1983) The amount of bone mineral and Schmorl’s nodes in lumbar vertebrae. Spine 8:266–271. https://doi.org/10.1097/00007632-198304000-00006

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    McFadden KD, Taylor JR (1989) End-plate lesions of the lumbar spine. Spine 14:867–869. https://doi.org/10.1097/00007632-198908000-00017

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Dar G, Masharawi Y, Peleg S et al (2010) Schmorl’s nodes distribution in the human spine and its possible etiology. Eur Spine J 19:670–675. https://doi.org/10.1007/s00586-009-1238-8

    Article  PubMed  Google Scholar 

  24. 24.

    Kakitsubata Y, Theodorou DJ, Theodorou SJ et al (2002) Cartilaginous endplates of the spine: MRI with anatomic correlation in cadavers. J Comput Assist Tomogr 26:933–940. https://doi.org/10.1097/00004728-200211000-00013

    Article  PubMed  Google Scholar 

  25. 25.

    Hamanishi C, Kawabata T, Yosii T et al (1994) Schmorl’s nodes on magnetic resonance imaging. Their incidence and clinical relevance. Spine 19:450–453. https://doi.org/10.1097/00007632-199402001-00012

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Williams FMK, Manek NJ, Sambrook PN et al (2007) Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Rheum 57:855–860. https://doi.org/10.1002/art.22789

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Mok FPS, Samartzis D, Karppinen J et al (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine 35:1944–1952. https://doi.org/10.1097/BRS.0b013e3181d534f3

    Article  PubMed  Google Scholar 

  28. 28.

    Moustarhfir M, Bresson B, Koch P et al (2016) MR imaging of Schmorl’s nodes: Imaging characteristics and epidemio-clinical relationships. Diagn Interv Imaging 97:411–417. https://doi.org/10.1016/j.diii.2016.02.001

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Dar G, Peleg S, Masharawi Y et al (2009) Demographical aspects of Schmorl nodes: a skeletal study. Spine 34:E312-315. https://doi.org/10.1097/BRS.0b013e3181995fc5

    Article  PubMed  Google Scholar 

  30. 30.

    Yin R, Lord EL, Cohen JR et al (2015) Distribution of Schmorl nodes in the lumbar spine and their relationship with lumbar disk degeneration and range of motion. Spine 40:E49-53. https://doi.org/10.1097/BRS.0000000000000658

    Article  PubMed  Google Scholar 

  31. 31.

    Sonne-Holm S, Jacobsen S, Rovsing H et al (2013) The epidemiology of Schmorl’s nodes and their correlation to radiographic degeneration in 4,151 subjects. Eur Spine J 22:1907–1912. https://doi.org/10.1007/s00586-013-2735-3

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wang Y, Videman T, Battié MC (2012) ISSLS prize winner: Lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine 37:1490–1496. https://doi.org/10.1097/BRS.0b013e3182608ac4

    Article  PubMed  Google Scholar 

  33. 33.

    Abbas J, Hamoud K, Peled N et al (2018) Lumbar Schmorl’s nodes and their correlation with spine configuration and degeneration. Biomed Res Int 2018:1574020. https://doi.org/10.1155/2018/1574020

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chen L, Battié MC, Yuan Y et al (2020) Lumbar vertebral endplate defects on magnetic resonance images: prevalence, distribution patterns, and associations with back pain. Spine J 20:352–360. https://doi.org/10.1016/j.spinee.2019.10.015

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Laredo JD, Bard M, Chretien J et al (1986) Lumbar posterior marginal intra-osseous cartilaginous node. Skeletal Radiol 15:201–208. https://doi.org/10.1007/bf00354061

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Saluja G, Fitzpatrick K, Bruce M et al (1986) Schmorl’s nodes (intravertebral herniations of intervertebral disc tissue) in two historic British populations. J Anat 145:87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Burke KL (2012) Schmorl’s nodes in an American military population: frequency, formation, and etiology. J Forensic Sci 57:571–577. https://doi.org/10.1111/j.1556-4029.2011.01992.x

    Article  PubMed  Google Scholar 

  38. 38.

    Zehra U, Cheung JPY, Bow C et al (2019) Multidimensional vertebral endplate defects are associated with disc degeneration, modic changes, facet joint abnormalities, and pain. J Orthop Res 37:1080–1089. https://doi.org/10.1002/jor.24195

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Swärd L (1992) The thoracolumbar spine in young elite athletes. Current concepts on the effects of physical training. Sports Med 13:357–364. https://doi.org/10.2165/00007256-199213050-00005

    Article  PubMed  Google Scholar 

  40. 40.

    Rose PS, Ahn NU, Levy HP et al (2001) Thoracolumbar spinal abnormalities in Stickler syndrome. Spine 26:403–409. https://doi.org/10.1097/00007632-200102150-00017

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Mäkitie RE, Niinimäki T, Nieminen MT et al (2017) Impaired WNT signaling and the spine-Heterozygous WNT1 mutation causes severe age-related spinal pathology. Bone 101:3–9. https://doi.org/10.1016/j.bone.2017.04.001

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Palazzo C, Sailhan F, Revel M (2014) Scheuermann’s disease: an update. Jt Bone Spine 81:209–214. https://doi.org/10.1016/j.jbspin.2013.11.012

    Article  Google Scholar 

  43. 43.

    Cleveland RH, Delong GR (1981) The relationship of juvenile lumbar disc disease and Scheuermann’s disease. Pediatr Radiol 10:161–164. https://doi.org/10.1007/bf00975191

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Yoshimoto M, Emori M, Teramoto A et al (2019) A case of acute intervertebral disc herniation into both the upper and lower vertebral body. Spine Surg Relat Res 3:193–195. https://doi.org/10.22603/ssrr.2018-0064

    Article  PubMed  Google Scholar 

  45. 45.

    Sandelich SM, Adirim TA (2017) An Unusual Cause of Back Pain in a 10-Year-Old Girl. Pediatr Emerg Care 33:352–355. https://doi.org/10.1097/PEC.0000000000000808

    Article  PubMed  Google Scholar 

  46. 46.

    Abu-Ghanem S, Ohana N, Abu-Ghanem Y et al (2013) Acute schmorl node in dorsal spine: an unusual cause of a sudden onset of severe back pain in a young female. Asian Spine J 7:131–135. https://doi.org/10.4184/asj.2013.7.2.131

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Takahashi K, Miyazaki T, Ohnari H et al (1995) Schmorl’s nodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J 4:56–59. https://doi.org/10.1007/bf00298420

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Plomp KA, Viðarsdóttir US, Weston DA et al (2015) The ancestral shape hypothesis: an evolutionary explanation for the occurrence of intervertebral disc herniation in humans. BMC Evol Biol 15:68. https://doi.org/10.1186/s12862-015-0336-y

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Plomp KA, Roberts CA, Viðarsdóttir US (2012) Vertebral morphology influences the development of Schmorl’s nodes in the lower thoracic vertebrae. Am J Phys Anthropol 149:572–582. https://doi.org/10.1002/ajpa.22168

    Article  PubMed  Google Scholar 

  50. 50.

    Plomp K, Roberts C, Strand Vidarsdottir U (2015) Does the correlation between Schmorl’s nodes and vertebral morphology extend into the lumbar spine? Am J Phys Anthropol 157:526–534. https://doi.org/10.1002/ajpa.22730

    Article  PubMed  Google Scholar 

  51. 51.

    Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896. https://doi.org/10.1097/00007632-200104150-00012

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Noshchenko A, Plaseied A, Patel VV et al (2013) Correlation of vertebral strength topography with 3-dimensional computed tomographic structure. Spine 38:339–349. https://doi.org/10.1097/BRS.0b013e31826c670d

    Article  PubMed  Google Scholar 

  53. 53.

    Von Forell GA, Nelson TG, Samartzis D et al (2014) Changes in vertebral strain energy correlate with increased presence of Schmorl’s nodes in multi-level lumbar disk degeneration. J Biomech Eng 136:061002. https://doi.org/10.1115/1.4027301

    Article  Google Scholar 

  54. 54.

    Hansson TH, Keller TS, Spengler DM (1987) Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 5:479–487. https://doi.org/10.1002/jor.1100050403

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Tomaszewski KA, Saganiak K, Gładysz T et al (2015) The biology behind the human intervertebral disc and its endplates. Folia Morphol (Warsz) 74:157–168. https://doi.org/10.5603/FM.2015.0026

    CAS  Article  Google Scholar 

  56. 56.

    Yasuma T, Saito S, Kihara K (1988) Schmorl’s nodes. Correlation of X-ray and histological findings in postmortem specimens. Acta Pathol Jpn 38:723–733

    CAS  PubMed  Google Scholar 

  57. 57.

    Resnick D, Niwayama G (1978) Intravertebral disk herniations: cartilaginous (Schmorl’s) nodes. Radiology 126:57–65. https://doi.org/10.1148/126.1.57

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniations in the young and end-plate vascularity. Clin Anat 11:171–176. https://doi.org/10.1002/(SICI)1098-2353(1998)11:3%3c171::AID-CA4%3e3.0.CO;2-W

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Möller A, Maly P, Besjakov J et al (2007) A vertebral fracture in childhood is not a risk factor for disc degeneration but for Schmorl’s nodes: a mean 40-year observational study. Spine 32:2487–2492. https://doi.org/10.1097/BRS.0b013e3181573d6a

    Article  PubMed  Google Scholar 

  60. 60.

    Wagner AL, Murtagh FR, Arrington JA et al (2000) Relationship of Schmorl’s nodes to vertebral body endplate fractures and acute endplate disk extrusions. AJNR Am J Neuroradiol 21:276–281

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Rajasekaran S, Kanna RM, Reddy RR et al (2016) How reliable are the reported genetic associations in disc degeneration?: the influence of phenotypes, age, population size, and inclusion sequence in 809 patients. Spine 41:1649–1660. https://doi.org/10.1097/BRS.0000000000001847

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Zhang N, Li F-C, Huang Y-J et al (2010) Possible key role of immune system in Schmorl’s nodes. Med Hypotheses 74:552–554. https://doi.org/10.1016/j.mehy.2009.09.044

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Stäbler A, Bellan M, Weiss M et al (1997) MR imaging of enhancing intraosseous disk herniation (Schmorl’s nodes). AJR Am J Roentgenol 168:933–938. https://doi.org/10.2214/ajr.168.4.9124143

    Article  PubMed  Google Scholar 

  64. 64.

    Hauger O, Cotten A, Chateil JF et al (2001) Giant cystic Schmorl’s nodes: imaging findings in six patients. AJR Am J Roentgenol 176:969–972. https://doi.org/10.2214/ajr.176.4.1760969

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Coulier B (2005) Giant fatty Schmorl’s nodes: CT findings in four patients. Skeletal Radiol 34:29–34. https://doi.org/10.1007/s00256-004-0858-7

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Zhao J-G, Zhang P, Zhang S-F et al (2010) Modic type III lesions and Schmorl’s nodes are the same pathological changes? Med Hypotheses 74:524–526. https://doi.org/10.1016/j.mehy.2009.09.049

    Article  PubMed  Google Scholar 

  67. 67.

    Han C, Wang T, Jiang H-Q et al (2016) An animal model of modic changes by embedding autogenous nucleus pulposus inside subchondral bone of lumbar vertebrae. Sci Rep 6:35102. https://doi.org/10.1038/srep35102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Boukhris R, Becker KL (1974) Schmorl’s nodes and osteoporosis. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-197410000-00031

    Article  PubMed  Google Scholar 

  69. 69.

    Park SJ, Kim HS, Kim HS et al (2015) Complete separation of the vertebral body associated with a Schmorl’s node accompanying severe osteoporosis. J Korean Neurosurg Soc 58:147–149. https://doi.org/10.3340/jkns.2015.58.2.147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Hsu KY, Zucherman JF, Derby R et al (1988) Painful lumbar end-plate disruptions: a significant discographic finding. Spine 13:76–78. https://doi.org/10.1097/00007632-198801000-00018

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Fields AJ, Liebenberg EC, Lotz JC (2014) Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J 14:513–521. https://doi.org/10.1016/j.spinee.2013.06.075

    Article  PubMed  Google Scholar 

  72. 72.

    Brown MF, Hukkanen MV, McCarthy ID et al (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Jt Surg Br 79:147–153. https://doi.org/10.1302/0301-620x.79b1.6814

    CAS  Article  Google Scholar 

  73. 73.

    Niwa N, Nishiyama T, Ozu C et al (2015) Schmorl nodes mimicking osteolytic bone metastases. Urology 86:e1-2. https://doi.org/10.1016/j.urology.2015.03.028

    Article  PubMed  Google Scholar 

  74. 74.

    Papadakis GZ, Millo C, Bagci U et al (2016) schmorl nodes can cause increased 68Ga DOTATATE activity on PET/CT, mimicking metastasis in patients with neuroendocrine malignancy. Clin Nucl Med 41:249–250. https://doi.org/10.1097/RLU.0000000000001065

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Zheng S, Dong Y, Miao Y et al (2014) Differentiation of osteolytic metastases and Schmorl’s nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol 83:1216–1221. https://doi.org/10.1016/j.ejrad.2014.02.003

    Article  PubMed  Google Scholar 

  76. 76.

    Wang Z, Ma D, Yang J (2016) 18F-FDG PET/CT can differentiate vertebral metastases from Schmorl’s nodes by distribution characteristics of the 18F-FDG. Hell J Nucl Med 19:241–244. https://doi.org/10.1967/s002449910406

    Article  PubMed  Google Scholar 

  77. 77.

    Lee JH, Park S (2019) Differentiation of schmorl nodes from bone metastases of the spine: use of apparent diffusion coefficient derived from DWI and fat fraction derived from a Dixon sequence. AJR Am J Roentgenol 213:W228–W235. https://doi.org/10.2214/AJR.18.21003

    Article  PubMed  Google Scholar 

  78. 78.

    Crawford BA, van der Wall H (2007) Bone scintigraphy in acute intraosseous disc herniation. Clin Nucl Med 32:790–792. https://doi.org/10.1097/RLU.0b013e318149ee54

    Article  PubMed  Google Scholar 

  79. 79.

    Park P, Tran NK, Gala VC et al (2007) The radiographic evolution of a Schmorl’s node. Br J Neurosurg 21:224–227. https://doi.org/10.1080/02688690701317169

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Sakellariou GT, Chatzigiannis I, Tsitouridis I (2005) Infliximab infusions for persistent back pain in two patients with Schmorl’s nodes. Rheumatology (Oxford) 44:1588–1590. https://doi.org/10.1093/rheumatology/kei155

    CAS  Article  Google Scholar 

  81. 81.

    Liu J, Hao L, Zhang X et al (2018) Painful Schmorl’s nodes treated by discography and discoblock. Eur Spine J 27:13–18. https://doi.org/10.1007/s00586-017-4996-8

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Kirchner F, Pinar A, Milani I et al (2020) Vertebral intraosseous plasma rich in growth factor (PRGF-Endoret) infiltrations as a novel strategy for the treatment of degenerative lesions of endplate in lumbar pathology: description of technique and case presentation. J Orthop Surg Res 15:72. https://doi.org/10.1186/s13018-020-01605-w

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Hasegawa K, Ogose A, Morita T et al (2004) Painful Schmorl’s node treated by lumbar interbody fusion. Spinal Cord 42:124–128. https://doi.org/10.1038/sj.sc.3101506

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    He S-C, Zhong B-Y, Zhu H-D et al (2017) Percutaneous vertebroplasty for symptomatic Schmorl’s nodes: 11 cases with long-term follow-up and a literature review. Pain Physician 20:69–76

    PubMed  Google Scholar 

  85. 85.

    Amoretti N, Guinebert S, Kastler A et al (2019) Symptomatic Schmorl’s nodes: role of percutaneous vertebroplasty. Open study on 52 patients. Neuroradiology 61:405–410. https://doi.org/10.1007/s00234-019-02171-7

    Article  PubMed  Google Scholar 

  86. 86.

    Zhi-Yong S, Zhu X, Gian Z et al (2017) Percutaneous vertebral augmentation for the treatment of symptomatic Schmorl’s nodes: our viewpoint and experience. Pain Phys 20:E470–E473

    Google Scholar 

  87. 87.

    (2012) When It comes to back pain causation, has the spine field missed the forest for the trees? The Back Letter 27:97–105. https://doi.org/10.1097/01.BACK.0000419631.49531.64

  88. 88.

    Abbas J, Slon V, Stein D et al (2017) In the quest for degenerative lumbar spinal stenosis etiology: the Schmorl’s nodes model. BMC Musculoskelet Disord 18:164. https://doi.org/10.1186/s12891-017-1512-6

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ramadorai UE, Hire JM, DeVine JG (2014) Magnetic resonance imaging of the cervical, thoracic, and lumbar spine in children: spinal incidental findings in pediatric patients. Glob Spine J 4:223–228. https://doi.org/10.1055/s-0034-1387179

    Article  Google Scholar 

  90. 90.

    Jagannathan D, Indiran V, Hithaya F (2016) Prevalence and clinical relevance of Schmorl’s nodes on magnetic resonance imaging in a tertiary hospital in Southern India. J Clin Diagn Res 10:TC06–TC09. https://doi.org/10.7860/JCDR/2016/19511.7757

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding has been received for this work.

Author information

Affiliations

Authors

Contributions

HA: Conception/design/analysis/interpretation of data, Drafting and critically revising the work, Final approval of the version to be published, Agreement to be accountable for all aspects of the work. LI: Conception/design/analysis/interpretation of data, Drafting and critically revising the work, Final approval of the version to be published, Agreement to be accountable for all aspects of the work.

Corresponding author

Correspondence to Hamida Azzouzi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study is a review, and as such conforms to all ethical standards required for a review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azzouzi, H., Ichchou, L. Schmorl’s nodes: demystification road of endplate defects—a critical review. Spine Deform (2021). https://doi.org/10.1007/s43390-021-00445-w

Download citation

Keywords

  • Schmorl’s node
  • Epidemiology
  • Physiopathology
  • Treatment
  • Review