Skip to main content

Advertisement

Log in

Anterior versus posterior spinal fusion for Lenke type 5 adolescent idiopathic scoliosis: a systematic review and meta-analysis of comparative studies

  • Review Article
  • Published:
Spine Deformity Aims and scope Submit manuscript

A Correction to this article was published on 29 November 2021

This article has been updated

Abstract

Purpose

To review and compare clinical and radiologic outcomes between anterior spinal fusion (ASF) and posterior spinal fusion (PSF) for the treatment of Lenke type 5 adolescent idiopathic scoliosis (AIS).

Methods

A systematic review was performed according to Preferred reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. All level I–III evidence studies investigating the clinical and radiologic outcomes of ASF and PSF for the treatment of Lenke type 5 AIS were included.

Results

Nine studies (285 ASF patients, 298 PSF patients) were included. ASF was associated with a significantly lower number of levels fused compared with PSF (p < 0.01) with similar immediate and long-term coronal deformity correction (p = 0.16; p = 0.12, respectively). PSF achieved a better correction of thoracic hypokyphosis in one study and lumbar hypolordosis in three studies. PSF was associated with a significant shorter length of stay (LOS) compared with ASF (p < 0.01). One long-term study demonstrated a significantly higher rate of proximal junctional kyphosis (PJK) with PSF compared with ASF. There were no significant differences in major complication or re-operation rates.

Conclusion

For the treatment of Lenke type 5 AIS, there is moderate evidence to suggest that ASF requires a lower number of instrumented levels to achieve similar immediate and long-term coronal deformity correction compared with PSF. There is some evidence to suggest that PSF may achieve better thoracic and lumbar sagittal deformity correction compared with ASF. There is some evidence to suggest a higher incidence of PJK at long-term follow-up with PSF compared with ASF. ASF is associated with a longer post-operative LOS compared with PSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Change history

References

  1. King HA, Moe JH, Bradford DS et al (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65:1302–1313

    Article  CAS  Google Scholar 

  2. Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83(8):1169–1181

    Article  CAS  Google Scholar 

  3. Sun X, Qiu Y, Liu Z et al (2009) Interbody cage support improves reconstruction of sagittal balance after anterior selective fusion in Lenke type 5 idiopathic scoliosis patients. Orthop Surg 1:285–292. https://doi.org/10.1111/j.1757-7861.2009.00051.x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun Z, Qiu G, Zhao Y et al (2014) Lowest instrumented vertebrae selection for selective posterior fusion of moderate thoracolumbar/lumbar idiopathic scoliosis: lower-end vertebra or lower-end vertebra+1? Eur Spine J 23:1251–1257. https://doi.org/10.1007/s00586-014-3276-0

    Article  PubMed  Google Scholar 

  5. Senkoylu A, Luk KD, Wong YW et al (2014) Prognosis of spontaneous thoracic curve correction after the selective anterior fusion of thoracolumbar/lumbar (Lenke 5C) curves in idiopathic scoliosis. Spine J 14:1117–1124. https://doi.org/10.1016/j.spinee.2013.07.467

    Article  PubMed  Google Scholar 

  6. Wang T, Zeng B, Xu J et al (2008) Radiographic evaluation of selective anterior thoracolumbar or lumbar fusion for adolescent idiopathic scoliosis. Eur Spine J 17:1012–1018. https://doi.org/10.1007/s00586-007-0510-z

    Article  PubMed  Google Scholar 

  7. Yu B, Zhang JG, Qiu GX et al (2010) Selective anterior thoracolumbar/lumbar fusion and instrumentation in adolescent idiopathic scoliosis. Chin Med J (Engl) 18:522–530

    CAS  Google Scholar 

  8. Min K, Hahn F, Ziebarth K (2007) Short anterior correction of the thoracolumbar/lumbar curve in King 1 idiopathic scoliosis: the behaviour of the instrumented and non-instrumented curves and the trunk balance. Eur Spine J 16:65–72. https://doi.org/10.1007/s00586-006-0075-2

    Article  PubMed  Google Scholar 

  9. Schulte TL, Liljenqvist U, Hierholzer E et al (2006) Spontaneous correction and derotation of secondary curves after selective anterior fusion of idiopathic scoliosis. Spine (Phila Pa 1976) 3:315–321. https://doi.org/10.1097/01.brs.0000197409.03396.24

    Article  Google Scholar 

  10. Wang F, Xu XM, Wei XZ et al (2015) Spontaneous thoracic curve correction after selective posterior fusion of thoracolumbar/lumbar curves in Lenke 5C adolescent idiopathic scoliosis. Medicine 29:1155. https://doi.org/10.1097/MD.0000000000001155

    Article  Google Scholar 

  11. Nambiar M, Yang Y, Liew S et al (2016) Single- versus dual-rod anterior instrumentation of thoracolumbar curves in adolescent idiopathic scoliosis. Eur Spine J 10:3249–3255. https://doi.org/10.1007/s00586-015-4360-9

    Article  Google Scholar 

  12. Kim YJ, Lenke LG, Kim J et al (2006) Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine 31:291–298. https://doi.org/10.1097/01.brs.0000197865.20803.d4

    Article  PubMed  Google Scholar 

  13. Kim YJ, Lenke LG, Cho SK et al (2004) Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:2040–2048. https://doi.org/10.1097/01.brs.0000138268.12324.1a

    Article  Google Scholar 

  14. Yoshihara H (2019) Surgical treatment of Lenke Type 5 adolescent idiopathic scoliosis: a systematic review. Spine 44(13):E788–E799. https://doi.org/10.1097/BRS.0000000000002963

    Article  PubMed  Google Scholar 

  15. Lin Y, Chen W, Chen A et al (2018) Anterior versus posterior selective fusion in treating adolescent idiopathic scoliosis: a systematic review and meta-analysis of radiologic parameters. World Neurosurg 111:e830–e844. https://doi.org/10.1016/j.wneu.2017.12.161

    Article  PubMed  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  17. Howick J, Chalmers I, Glasziou P, et al (2011) The 2011 Oxford CEBM evidence levels of evidence [introductory document]. oxford centre for evidence-based medicine. http://www.cebm.net/index.aspx?o1⁄45653. Accessed 21 Nov 2020

  18. Harris JD, Quatman CE, Manring MM et al (2014) How to write a systematic review. Am J Sports Med 42(11):2761–2768. https://doi.org/10.1177/0363546513497567

    Article  PubMed  Google Scholar 

  19. Coleman B, Khan K, Maffulli N et al (2000) Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Scand J Med Sci Sports 10:2–11. https://doi.org/10.1034/j.1600-0838.2000.010001002.x

    Article  CAS  PubMed  Google Scholar 

  20. Ebell MH, Siwek J, Weiss BD et al (2004) Strength of Recommendation Taxonomy (SORT): a patient-centered approach to grading evidence in the medical literature. Am Fam Physician 69:549–557

    Google Scholar 

  21. GRADE Working Group (2007) Grading of recommendations, assessment, development, and evaluation. http://www.gradeworkinggroup.org. Accessed 5 Apr 2020

  22. Burda BU, O’Connor EA, Webber EM et al (2017) Estimating data from figures with a Web-based program: considerations for a systematic review. Res Synth Methods 8(3):258–262. https://doi.org/10.1002/jrsm.1232

    Article  PubMed  Google Scholar 

  23. Drevon D, Fursa SR, Malcolm AL (2017) Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif 41(2):323–339. https://doi.org/10.1177/0145445516673998

    Article  PubMed  Google Scholar 

  24. Slavin RE (1995) Best evidence synthesis: an intelligent alternative to meta-analysis. J Clin Epidemiol 48:9–18. https://doi.org/10.1016/0895-4356(94)00097-a

    Article  CAS  PubMed  Google Scholar 

  25. Sterne JAC, Savovic J, Page MJ et al (2019) Rob 2: a revised tool for assessing risk of bias in randomized trials. BMJ. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sterne JAC, Hernan MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hee HT, Yu ZR, Wong HK (2007) Comparison of segmental pedicle screw instrumentation versus anterior instrumentation in adolescent idiopathic thoracolumbar and lumbar scoliosis. Spine (Phila Pa 1976) 32(14):1533–1542. https://doi.org/10.1097/BRS.0b013e318067dc3d

    Article  Google Scholar 

  28. Wang Y, Fei Q, Qiu G et al (2008) Anterior spinal fusion versus posterior spinal fusion for moderate lumbar/thoracolumbar adolescent idiopathic scoliosis: a prospective study. Spine (Phila Pa 1976) 33(20):2166–2172. https://doi.org/10.1097/BRS.0b013e318185798d

    Article  Google Scholar 

  29. Geck MJ, Rinella A, Hawthorne D et al (2009) Comparison of surgical treatment in Lenke 5C adolescent idiopathic scoliosis: anterior dual rod versus posterior pedicle fixation surgery: a comparison of two practices. Spine (Phila Pa 1976) 34(18):1942–1951. https://doi.org/10.1097/BRS.0b013e3181a3c777

    Article  Google Scholar 

  30. Li M, Ni J, Fang X et al (2009) Comparison of selective anterior versus posterior screw instrumentation in Lenke5C adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34(11):1162–1166. https://doi.org/10.1097/BRS.0b013e31819e2b16

    Article  Google Scholar 

  31. Abel MF, Singla A, Feger MA et al (2016) Surgical treatment of Lenke 5 adolescent idiopathic scoliosis: comparison of anterior vs posterior approach. World J Orthop 7(9):553–560. https://doi.org/10.5312/wjo.v7.i9.553

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dong Y, Weng X, Zhao H et al (2016) Lenke 5C curves in adolescent idiopathic scoliosis: anterior vs posterior selective fusion. Neurosurgery 78(3):324–331. https://doi.org/10.1227/NEU.0000000000001055

    Article  PubMed  Google Scholar 

  33. Lim JL, Hey HWD, Kumar N et al (2020) A 10-year radiographic study comparing anterior versus posterior instrumented spinal fusion in patients with lenke type 5 adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 45(9):612–620. https://doi.org/10.1097/BRS.0000000000003331

    Article  Google Scholar 

  34. Li J, Zhao Z, Tseng C et al (2018) Selective fusion in lenke 5 adolescent idiopathic scoliosis. World Neurosurg 118:e784–e791. https://doi.org/10.1016/j.wneu.2018.07.052

    Article  PubMed  Google Scholar 

  35. Miyanji F, Nasto LA, Bastrom T et al (2018) A detailed comparative analysis of anterior versus posterior approach to Lenke 5C curves. Spine (Phila Pa 1976) 43(5):E285–E291. https://doi.org/10.1097/BRS.0000000000002313

    Article  Google Scholar 

  36. Nohara A, Kawakami N, Saito T et al (2015) Comparison of surgical outcomes between anterior fusion and posterior fusion in patients with AIS lenke type 1 or 2 that underwent selective thoracic fusion -long-term follow-up study longer than 10 postoperative years. Spine (Phila Pa 1976) 40(21):1681–1689. https://doi.org/10.1097/BRS.0000000000001121

    Article  Google Scholar 

  37. Suk SI, Lee CK, Chung SS (1994) Comparison of Zielke ventral derotation system and Cotrel-Dubousset instrumentation in the treatment of idiopathic lumbar and thoracolumbar scoliosis. Spine 19(4):419–429. https://doi.org/10.1097/00007632-199402001-00007

    Article  CAS  PubMed  Google Scholar 

  38. Wong HK, Hee HT, Yu Z et al (2004) Results of thoracoscopic instrumented fusion versus conventional posterior instrumented fusion in adolescent idiopathic scoliosis undergoing selective thoracic fusion. Spine (Phila Pa 1976) 29(18):2031–2039. https://doi.org/10.1097/01.brs.0000138304.77946.ea

    Article  Google Scholar 

  39. Demura S, Watanabe K, Suzuki T et al (2020) Comparison of pulmonary function after selective anterior versus posterior fusion for the correction of thoracolumbar and lumbar adolescent idiopathic scoliosis. Glob Spine J 10(4):433–437. https://doi.org/10.1177/2192568219859573

    Article  Google Scholar 

Download references

Funding

No financial support was provided to complete this research.

Author information

Authors and Affiliations

Authors

Contributions

TH: Made substantial contributions to the conception and design of work, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. JFL: Made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. VH: Made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. JT: Made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. DD: Made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. DSH: Senior surgeon who made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. RAWM: Senior surgeon who made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work.

Corresponding author

Correspondence to Takashi Hirase.

Ethics declarations

Conflict of interest

Takashi Hirase, Jeremiah Ling, Varan Haghshenas, Richard Fuld III, David Dong, and B Christoph Meyer declare no potential conflicts of interest with respect to research, authorship, and/or publication of this article. Rex AW Marco has the following disclosures: DePuy, A Johnson & Johnson Company: Paid presenter or speaker; Globus Medical: Paid presenter or speaker; Musculoskeletal Tumor Society: Board or committee member; Stryker: Paid presenter or speaker; Synaptive Medical: Paid presenter or speaker. Darrell S Hanson has the following disclosures: DePuy, A Johnson & Johnson Company: IP royalties; Paid consultant; Paid presenter or speaker; Medtronic Sofamor Danek: Paid consultant; Paid presenter or speaker.

Ethical approval

No ethical approval was required for this systematic review.

Consent to participate

This work did not require the use of informed consent.

Consent for publication

Consent for publication was completed by all authors in this work.

Informed consent

This systematic review did not require the use of informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirase, T., Ling, J.F., Haghshenas, V. et al. Anterior versus posterior spinal fusion for Lenke type 5 adolescent idiopathic scoliosis: a systematic review and meta-analysis of comparative studies. Spine Deform 10, 267–281 (2022). https://doi.org/10.1007/s43390-021-00436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-021-00436-x

Keywords

Navigation