Skip to main content
Log in

Design and implementation of a discontinuous SVM applied for a quasi Z-source inverter with power loss reduction

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This study proposes a new control strategy for the quasi Z-source two-level three-phase inverter, accurate discontinuous SVM (AD-ZSVPWM). The proposed AD-ZSVPWM control technique enhances the output power quality by reducing total harmonic distortion (THD) and conduction losses. Low THD is achieved by increasing the algorithm’s accuracy using a division of six vector states in each switching period and the distribution of six shoot-through states within the period. The conduction losses are reduced by splitting each sector into two subsectors of 30°. The proposed control scheme has the following advantages: reduced THD, low conduction loss, and increased boosting factor. MATLAB/Simulink software is used, and an experimental test is conducted to validate the proposed strategy. PLECS software is utilized to calculate the switching and conduction losses. For experimental verification, a hardware test bench comprising a dSPACE DS1104 board that controls a three-phase quasi Z-source inverter that supplies an R-L load is used. Simulation and hardware results show that the proposed scheme provides improved performance in terms of power quality and power loss reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

THD:

Total harmonic distortion

ZSI:

Z-source inverter

QZI:

Quasi Z-source inverter

MBC:

Maximum boost control

SBC:

Simple boost control

MCBC:

Maximum constant boost control

\({T}_{{\text{sht}}}\) :

Time of the shoot-through state

\(T\) :

Cycle time

\({V}_{{c}_{1}},{V}_{{c}_{2}}\) :

Capacitor voltages

B :

Boost factor

\(d\) :

Shoot-through duty ratio

\({V}_{i}\) :

Output voltages

\({V}_{{\text{dc}}}\) :

Input voltage

References

  1. Peng, F.Z.: Z-source inverter. IEEE Trans. Ind. Appl. 39, 504–510 (2003)

    Article  Google Scholar 

  2. Cavalcanti, M., Bradaschia, F., de Melo Neto, M., Azevedo, G., Cardoso, T.: Dynamic modeling and control system design of the buck-boost-based three-state three-phase Z-source inverter. Int. J. Electr. Power Energy Syst. 104, 654–663 (2019)

    Article  Google Scholar 

  3. Ahangarkolaei, J.M., Izadi, M., Nouri, T.: Applying a sliding mode controller to maximum power point tracking in a quasi Z-source inverter based on the power curve of a photovoltaic cell. Electronics 11, 2164 (2022)

    Article  Google Scholar 

  4. Rymarski, Z., Bernacki, K.: Drawbacks of impedance networks. Int. J. Circuit Theory Appl. 46, 612–628 (2018)

    Article  Google Scholar 

  5. Anderson, J., Peng, F.Z.: "Four quasi-Z-source inverters. IEEE Power Electron. Spec. Conf. 2008, 2743–2749 (2008)

    Google Scholar 

  6. Sun, D., Ge, B., Bi, D., Peng, F.Z.: Analysis and control of quasi-Z source inverter with battery for grid-connected PV system. Int. J. Electr. Power Energy Syst. 46, 234–240 (2013)

    Article  Google Scholar 

  7. Huynh, A.-T., Ho, A.-V., Chun, T.-W.: Capacitor-assisted active-switched quasi-Z-source inverters with high voltage gain. J. Power Electron. 22, 2016–2024 (2022)

    Article  Google Scholar 

  8. Ellabban, O., Van Mierlo, J., Lataire, P.: Experimental study of the shoot-through boost control methods for the Z-source inverter. EPE J. 21, 18–29 (2011)

    Article  Google Scholar 

  9. Peng, F.Z., Shen, M., Qian, Z.: Maximum boost control of the Z-source inverter. IEEE Trans. Power Electron. 20, 833–838 (2005)

    Article  Google Scholar 

  10. Shen, M., Wang, J., Joseph, A., Peng, F.Z., Tolbert, L.M., Adams, D.J.: Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Trans. Ind. Appl. 42, 770–778 (2006)

    Article  Google Scholar 

  11. Shen, M., Wang, J., Joseph, A., Peng, F.Z., Tolbert, L.M, Adams, D.J.: Maximum constant boost control of the Z-source inverter, in Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting (2004)

  12. Jung, J.-W., Keyhani, A.: Control of a fuel cell based Z-source converter. IEEE Trans. Energy Convers. 22, 467–476 (2007)

    Article  Google Scholar 

  13. Liu, W., Yang, Y., Kerekes, T., Blaabjerg, F.: Generalized space vector modulation for ripple current reduction in quasi-z-source inverters. IEEE Trans. Power Electron. 36, 1730–1741 (2020)

    Article  Google Scholar 

  14. Qin, C., Zhang, C., Chen, A., Xing, X., Zhang, G.: A space vector modulation scheme of the quasi-Z-source three-level T-type inverter for common-mode voltage reduction. IEEE Trans. Ind. Electron. 65, 8340–8350 (2018)

    Article  Google Scholar 

  15. Xu,G., Chen, D., Qu, A.: Simple boost modified space vector modulation strategy for three-phase quasi-Z-source inverter, in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 5365–5370 (2020)

  16. Gaber, M., Abdel-Rahim, O., Orabi, M.: Optimization of the modulation sequence and proposing an overlap technique for current source inverter. IEEE Appl. Power Electron. Conf. Expos. (APEC) 2019, 2475–2480 (2019)

    Google Scholar 

  17. Liu, Y., Ge, B., Abu-Rub, H., Peng, F.Z.: Overview of space vector modulations for three-phase Z-source/quasi-Z-source inverters. IEEE Trans. Power Electron. 29, 2098–2108 (2013)

    Article  Google Scholar 

  18. Liu,Y., Ge, B., Ferreira, F.J., de Almeida, A.T., Abu-Rub, H.: Modeling and SVPWM control of quasi-Z-source inverter, in Electrical Power Quality and Utilisation (EPQU), 2011 11th International Conference on, 1–7 (2011)

  19. Barathy, B., Kavitha, A., Viswanathan, T.: Effective space vector modulation switching sequence for three phase Z source inverters. IET Power Electron. 7, 2695–2703 (2014)

    Article  Google Scholar 

  20. Abid, A., Zellouma, L., Bouzidi, M., Lashab, A., Boussabeur, M.T., Rabhi, B.: A comparative study of recent discontinuous modulation techniques for three-phase impedance source inverter, SEPOC 2021, (2021)

  21. Abdelhakim, A., Blaabjerg, F., Mattavelli, P.: An improved discontinuous space vector modulation scheme for the three-phase impedance source inverters, in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 3307-3313 (2018)

  22. Liu, P., Xu, J., Sun, M., Yuan, J., Blaabjerg, F.: New discontinuous space vector modulation strategies for impedance-source inverter with superior thermal and harmonic performance. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2021.3139185

    Article  Google Scholar 

  23. Chaib, I., Berkouk, E.M., Gaubert, J.-P., Kermadi, M., Sabeur, N., Mekhilef, S.: An improved discontinuous space vector modulation for Z-Source inverter with reduced power losses. IEEE J. Emerg. Sel. Topics Power Electron. 9, 3479–3488 (2020)

    Article  Google Scholar 

  24. Sabeur, N., Mekhilef, S., Masaoud, A.: A simplified time-domain modulation scheme-based maximum boost control for three-phase quasi-Z source inverters. IEEE J. Emerg. Sel. Topics Power Electron. 6, 760–769 (2017)

    Article  Google Scholar 

  25. Qin, C., Xing, X., Jiang, Y.: Topology and space vector modulation method for the reduced switch count quasi-Z-source three-level inverter. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2022.3183276

    Article  Google Scholar 

  26. Mirafzal, B., Saghaleini, M., Kaviani, A.K.: An SVPWM-based switching pattern for stand-alone and grid-connected three-phase single-stage boost inverters. IEEE Trans. Power Electron. 26, 1102–1111 (2011)

    Article  Google Scholar 

  27. Jagan, V., Alpuri, M.K.R., Neeharika, M., Swetha, C., Mahendar, P., Das, S.: A family of switched-impedance network enhanced-boost quasi-Z-source inverters. Int. J. Power Electron. Drive Syst. 13, 309 (2022)

    Google Scholar 

  28. Na, T., Zhang, Q., Xu, G., Yan, Y., Chen, X.: A modified SVM Method for three-phase quasi-Z-source rectifier with fully soft switching operation and low conduction losses. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2022.3212423

    Article  Google Scholar 

  29. Kj, P., Ramchand, R.: A generalized space vector modulation scheme based on a switch matrix for cascaded H-bridge multilevel inverters. J. Power Electron. 18, 522–532 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtissam Chaib.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaib, I., Kermadi, M., Mekhilef, S. et al. Design and implementation of a discontinuous SVM applied for a quasi Z-source inverter with power loss reduction. J. Power Electron. (2024). https://doi.org/10.1007/s43236-024-00824-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43236-024-00824-2

Keywords

Navigation