Skip to main content

Advertisement

Log in

A New Space Vector Modulation Technique for a Hybrid 2/3-Level Inverter with Minimized Switching Losses

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new space vector modulation (SVM) method for the hybrid 2/3 level. The classical SVM subdivides each sector of the space vector diagram into three regions. In regions two and three, only the configuration of two large vectors and one short vector is used to estimate the reference voltage (\(V_{ref}\)). The configuration of two short vectors and one large vector is omitted, which cannot guarantee a perfect approximation of the reference vector for all the modulation indices. In the proposed SVM, each sector is subdivided into seven different regions, and all possible configurations of vectors will be used to ensure a better approximation of \(V_{ref}\). Besides, a new switching strategy is suggested to ensure minimum switching losses and to regulate the neutral point voltage with high precision. The new SVM algorithm is compared through a simulation and experimental validation to two methods, namely the conventional SVM algorithm and sine pulse width modulation (SPWM) method. The results showed the superiority of the proposed SVM algorithm over the SPWM method and the prior SVM method. With the proposed SVM algorithm, the total harmonic distortion has been effectively reduced for all modulation indices. Besides, the DC-link voltage is fairly shared between the inverter capacitors. On the other hand, a co-simulation between MATLAB/Simulink and PLECS software is performed for thermal modeling and power loss analysis using the three compared methods. It turns out that the proposed switching strategy reduces the switching losses effectively for low and high modulation indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Mali, R.; Adam, N.; Satpaise, A.; Vaidya, A. P.: Performance comparison of two level inverter with classical multilevel inverter topologies. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–7 (2019)

  2. Hassan, A.; Yang, X.; Houran, Chen W. M. A.: A state of the art of the multilevel inverters with reduced count components. Electronics 9, 1924 (2020)

    Article  Google Scholar 

  3. Ghosh, G.; Sarkar, S.; Mukherjee, S.; Pal, T.: Sen, S.: A comparative study of different multilevel inverters. In: 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), pp. 1–6 (2017)

  4. Sayed, K.; et al.: A review of DC-AC converters for electric vehicle applications. Energies 15, 1241 (2022)

    Article  Google Scholar 

  5. Gopal, Y.; Birla, D.; Lalwani, M.: Reduced switches multilevel inverter integration with boost converters in photovoltaic system. SN Appl. Sci. 2, 58 (2019)

    Article  Google Scholar 

  6. Zhang, Y.; Hu, C.; Wang, Q.; Zhou, Y.; Sun, Y.: Neutral-point potential balancing control strategy for three-level ANPC converter using SHEPWM scheme. Energies 12, 4328 (2019)

    Article  Google Scholar 

  7. Bughneda, A.; Salem, M.; Richelli, A.; Ishak, D.; Alatai, S.: Review of multilevel inverters for PV energy system applications. Energies 14, 1585 (2021)

    Article  Google Scholar 

  8. Bana, P.R.; Panda, K.P.; Naayagi, R.T.; Siano, P.; Panda, G.: Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation. IEEE Access. 7, 54888–54909 (2019)

    Article  Google Scholar 

  9. Srinivasan, G.K.; Rivera, M.; Loganathan, V.; Ravikumar, D.; Mohan, B.: Trends and challenges in multi-level inverter with reduced switches. Electronics 10, 368 (2021)

    Article  Google Scholar 

  10. Meraj, S.T.; Yahaya, N.Z.; Hasan, K.; Masaoud, A.: A hybrid T-type (HT-type) multilevel inverter with reduced components. Ain Shams Eng. J. 12, 1959–1971 (2021)

    Article  Google Scholar 

  11. Trabelsi, M.; Vahedi, H.; Abu-Rub, H.: Review on single-DC-source multilevel inverters: topologies, challenges, industrial applications, and recommendations. IEEE Open J. Ind. Electron. Soc. 2, 112–127 (2021)

    Article  Google Scholar 

  12. Siddique, M.D.; Mekhilef, S.; Padmanaban, S.; Memon, M.A.; Kumar, C.: Single-phase step-up switched-capacitor-based multilevel inverter topology with SHEPWM. IEEE Trans. Ind. Appl. 57, 3107–3119 (2021)

    Article  Google Scholar 

  13. Vasu, R.; Chattopadhyay, S.K.; Chakraborty, C.: Seven-level packed U-cell (PUC) converter with natural balancing of capacitor voltages. IEEE Trans. Ind. Appl. 56, 5234–5244 (2020)

    Article  Google Scholar 

  14. Alquennah, A.N.; Trabelsi, M.; Rayane, K.; Vahedi, H.; Abu-Rub, H.: Real-time implementation of an optimized model predictive control for a 9-level CSC inverter in grid-connected mode. Sustainability. 13, 8119 (2021)

    Article  Google Scholar 

  15. Vahedi, H.; Rahmani, S.; Al-Haddad, K.: Pinned mid-points multilevel inverter (PMP): three-phase topology with high voltage levels and one bidirectional switch. In: IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, pp. 102–107 (2013)

  16. Mihalache, L.: A hybrid 2/3 level converter with minimum switch count. In: Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, vol. 2, pp. 611–618 (2006)

  17. Alepuz, S.; et al.: A survey on capacitor voltage control in neutral-point-clamped multilevel converters. Electronics 11, 527 (2022)

    Article  Google Scholar 

  18. Baimel, D.; Tapuchi, S.; Baimel, N.: A review of carrier based PWM techniques for multilevel inverters’ control. Energy Procedia 2, 1178 (2017)

    Google Scholar 

  19. Memon, M.A.; Mekhilef, S.; Mubin, M.; Aamir, M.: Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: a review. Renew. Sustain. Energy Rev. 82, 2235–2253 (2018)

    Article  Google Scholar 

  20. Nandhini, E.; Sivaprakasam, A.: A review of various control strategies based on space vector pulse width modulation for the voltage source inverter. IETE J. Res. 2, 1–15 (2020)

    Google Scholar 

  21. Riad, N.; Anis, W.; Elkassas, A.; Hassan, A.E.-W.: Three-phase multilevel inverter using selective harmonic elimination with marine predator algorithm. Electronics 10, 374 (2021)

    Article  Google Scholar 

  22. Devineni, G.K.; Ganesh, A.: Problem formulations, solving strategies, implementation methods and applications of selective harmonic elimination for multilevel converters. JESA 53, 939–952 (2020)

    Article  Google Scholar 

  23. Jayakumar, V.; Chokkalingam, B.; Munda, J.L.: A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters. IEEE Access. 9, 112104–112144 (2021)

    Article  Google Scholar 

  24. Marzoughi, A.; Imaneini, H.; Moeini, A.: An optimal selective harmonic mitigation technique for high power converters. Int. J. Electr. Power Energy Syst. 49, 34–39 (2013)

    Article  Google Scholar 

  25. Peng, H.; et al.: Improved space vector modulation for neutral-point balancing control in hybrid-switch-based T-type neutral-point-clamped inverters with loss and common-mode voltage reduction. CPSS Trans. Power Electron. Appl. 4, 328–338 (2019)

    Google Scholar 

  26. Kamel, T.; Abdelkader, D.; Said, B.; Padmanaban, S.; Iqbal, A.: Extended Kalman filter based sliding mode control of parallel-connected two five-phase PMSM drive system. Electronics 7, 14 (2018)

    Article  Google Scholar 

  27. Alanisamy, R.; Thamizh, T.T.M.; Ramesh, M.; Rajkumar, A.; Vijayakumar, K.: Implementation of four dimensional space vector modulation for five phase voltage source inverter. Ain Shams Eng. J. 12, 2891–2898 (2021)

    Article  Google Scholar 

  28. Zheng, J.-Y.; Shen, Z.-L.; Mei, J.; Wang, L.-F.: An Improved Neutral-Point Voltage Balancing Algorithm for the NPC Three-Level Inverter Based on Virtual Space Vector PWM. In: 2010 International Conference on Electrical and Control Engineering, pp. 3283–3287 (2010)

  29. Goh, H.H.; et al.: Common-mode voltage reduction algorithm for photovoltaic grid-connected inverters with virtual-vector model predictive control. Electronics 10, 2607 (2021)

    Article  Google Scholar 

  30. Ramasamy, P.; Krishnasamy, V.: A 3D-space vector modulation algorithm for three phase four wire neutral point clamped inverter systems as power quality compensator. Energies 10, 1792 (2017)

    Article  Google Scholar 

  31. Bhattacharya, B.; Chakraborty, A.K.: Three dimensional space vector modulation theory: practices without proofs. IJECE 6, 21 (2016)

    Article  Google Scholar 

  32. Gu, X.; Wei, B.; Zhang, G.; Wang, Z.; Chen, W.: Improved synchronized space vector PWM strategy for three-level inverter at low modulation index. Electronics 8, 1400 (2019)

    Article  Google Scholar 

  33. Zhang, G.; Zhou, Z.; Shi, T.; Xia, C.: An improved multimode synchronized space vector modulation strategy for high-power medium-voltage three-level inverter. IEEE Trans. Power Electron. 36, 4686–4696 (2021)

    Article  Google Scholar 

  34. Ardakani, S.G.; Hosseinpour, M.; Shahparasti, M.; Siahi, M.: Direct torque control of low-voltage three-phase induction motor using a three-level eight-switch inverter. Arab. J. Sci. Eng. 44(8), 7121–7131 (2019)

    Article  Google Scholar 

  35. Shahparasti, M.; Heydari, R.; Savaghebi, M.; Rodriguez, J.; Blaabjerg, F.: Hybrid four-wire three-level inverter equipped with model predictive control for UPS applications. In: 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6 (2020)

  36. Muniz, J.H.G.; da Silva, E.R.C.; da N obrega, R.B.; dos Santos, E.C.: An improved pulse-width-modulation for the modified hybrid 2/3-level converter. In: 2013 Brazilian Power Electronics Conference, pp. 248–253 (2013)

  37. Najafi, P.; Houshmand Viki, A.; Shahparasti, M.: An integrated interlinking converter with DC-link voltage balancing capability for bipolar hybrid microgrid. Electr. Eng. 101, 895–909 (2019)

    Article  Google Scholar 

  38. Sadeghi, Z.; Shahparasti, M.; Rajaei, A.; Laaksonen, H.: Three-level reduced switch AC/DC/AC power conversion system for high voltage electric vehicles. Sustainability. 14, 1620 (2022)

    Article  Google Scholar 

  39. Hosseinpour, M.; Akbari, R.; Dejamkhooy, A.; Sedaghati, F.: Design and control of three-phase quasi-Z-source based hybrid 2/3 level inverter. J. Oper. Autom. Power Eng. 3, 114 (2021)

    Google Scholar 

  40. Akbari, R.; hosseinpour, M.: Modeling and simulation of dual Z-source based hybrid 2/3 level inverter. In: 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1–7 (2021)

  41. Tian, K.; Wang, J.; Wu, B.; Cheng, Z.; Zargari, N.R.: A virtual space vector modulation technique for the reduction of common-mode voltages in both magnitude and third-order component. IEEE Trans. Power Electron. 31(1), 839–848 (2015)

    Article  Google Scholar 

  42. Narendrababu, A.; Yalla, N.; Agarwal, P.: Hybrid 2/3 level inverter with unequal pv array voltages. In: 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3257–3261 (2020)

  43. Najafi, P.; Viki, A.H.; Shahparasti, M.: Novel space vector-based control scheme with dc-link voltage balancing capability for 10 switch converter in bipolar hybrid microgrid. Sustain. Energy Grids Netw. 20, 100256 (2019)

    Article  Google Scholar 

  44. Najafi, P.; Houshmand Viki, A.; Shahparasti, M.; Seyedalipour, S.S.; Pouresmaeil, E.: A novel space vector modulation scheme for a 10-switch converter. Energies 13(7), 1855 (2020)

    Article  Google Scholar 

  45. Jiang, W.; Wang, P.; Ma, M.; Wang, J.; Li, J.; Li, L.; Chen, K.: A novel virtual space vector modulation with reduced common-mode voltage and eliminated neutral point voltage oscillation for neutral point clamped three-level inverter. IEEE Trans. Industr. Electron. 67(2), 884–894 (2019)

    Article  Google Scholar 

  46. Vu, P.; Nguyen, T.V.; Nguyen, M.D.; Tran, C.N.; Do, A.T.: Modified space vector modulation technique for three phase three level T-type inverter. Int. J. Renew. Energy Res. (IJRER). 11, 1230–1237 (2021)

    Google Scholar 

  47. Molina Llorente, R.: Practical Control of Electric Machines: Model-Based Design and Simulation. Springer, Berlin (2020)

    Book  Google Scholar 

  48. Zhang, G.; Su, Y.; Zhou, Z.; Geng, Q.: A carrier-based discontinuous PWM strategy of NPC Three-level inverter for common-mode voltage and switching loss reduction. Electronics 10, 3041 (2021)

    Article  Google Scholar 

  49. Abad, G.; Lopez, J.; Rodriguez, M.; Marroyo, L.; Iwanski, G.: Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation. Wiley, London (2011)

    Book  Google Scholar 

  50. Nguyen, P.C.; Phan, Q.D.; Nguyen, D.T.: A new decentralized space vector PWM method for multilevel single-phase full bridge converters. Energies 15, 1010 (2022)

    Article  Google Scholar 

  51. Li, F.; et al.: Neutral-point potential balance control strategy on three-level active power filters. Math. Probl. Eng. 2021, 1–9 (2021)

  52. Chen, H.; Zhao, H.: Review on pulse-width modulation strategies for common-mode voltage reduction in three-phase voltage-source inverters. IET Power Electron. 9(14), 2611–2620 (2016)

    Article  Google Scholar 

  53. Ramasamy, P.; Krishnasamy, V.: Svpwm control strategy for a three phase five level dual inverter fed open-end winding induction motor. ISA Trans. 102, 105–116 (2020)

    Article  Google Scholar 

  54. Robles, E.; Fernandez, M.; Andreu, J.; Ibarra, E.; Ugalde, U.: Advanced power inverter topologies and modulation techniques for common-mode voltage elimination in electric motor drive systems. Renew. Sustain. Energy Rev. 140, 110746 (2021)

    Article  Google Scholar 

  55. Ramasamy, P.; Krishnasamy, V.: Minimization of common-mode voltage for five-phase three-level NPC inverter using SVPWM strategy. Iran J. Sci. Technol. Trans. Electr. Eng. 44, 1221–1232 (2020)

    Article  Google Scholar 

  56. Ahmad, J.; et al.: Performance analysis and hardware-in-the-loop (HIL) validation of single switch high voltage gain DC-DC converters for MPP tracking in solar PV system. IEEE Access. 9, 48811–48830 (2021)

    Article  Google Scholar 

  57. Siddique, M.D.; Mekhilef, S.; Shah, N.M.; Sarwar, A.; Memon, M.A.: A new single-phase cascaded multilevel inverter topology with reduced number of switches and voltage stress. Int Trans Electr Energ Syst. 30, 1104 (2020)

    Article  Google Scholar 

  58. Fahad, M.; Siddique, M.D.; Iqbal, A.; Sarwar, A.; Mekhilef, S.: Implementation and analysis of a 15-level inverter topology with reduced switch count. IEEE Access. 9, 40623–40634 (2021)

    Article  Google Scholar 

  59. Mustafa, U.; Arif, M.S.B.; Kennel, R.; Abdelrahem, M.: Asymmetrical eleven-level inverter topology with reduced power semiconductor switches, total standing voltage and cost factor. IET Power Electron. 15, 395–411 (2022)

    Article  Google Scholar 

  60. Siddique, M.D.; Iqbal, A.; Sathik, M.A.J.; Mekhilef, S.; Almakhles, D.J.: Design and implementation of a new unity gain nine-level active neutral point clamped multilevel inverter topology. IET Power Electron. 13, 3204–3208 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their helpful comments.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Massaq.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massaq, Z., Abounada, A. & Ramzi, M. A New Space Vector Modulation Technique for a Hybrid 2/3-Level Inverter with Minimized Switching Losses. Arab J Sci Eng 47, 14673–14693 (2022). https://doi.org/10.1007/s13369-022-06995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06995-z

Keywords

Navigation