Skip to main content

Advertisement

Log in

SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Accurately predicting the state of health (SOH) and remaining useful life (RUL) of Li-ion batteries is the key to Li-ion battery health management. In this paper, a novel GPR-based method for SOH and RUL prediction is proposed. First, five features are extracted from the cyclic charging currents of batteries, and a grey correlation analysis (GRA) shows that these five features are highly correlated with battery capacity. A novel Li-ion battery SOH prediction model is established by improving a basic Gaussian process regression model. Meanwhile, a polynomial regression model is developed to update the feature values in the future. Then the RUL of a battery is predicted by combining the SOH prediction model. Finally, the prediction effect of the proposed model is compared with other models using four Li-ion battery degradation data. The obtained results show that the model proposed in this paper has the highest accuracy. The robustness of the proposed model is verified by random walk battery data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akash, B., Zineb, S., Eric, G., et al.: Review on State of Health estimation methodologies for lithium-ion batteries in the context of circular economy. CIRP J. Manuf. Sci. Technol. 32, 517–528 (2021)

    Article  Google Scholar 

  2. Yu, Z., Xiao, L., Li, H., et al.: Model parameter identification for lithium batteries using the coevolutionary particle swarm optimization method. IEEE Trans. Ind. Electron. 64(7), 5690–5700 (2017)

    Article  Google Scholar 

  3. Bian, X., Liu, L., Yan, J.: A model for state-of-health estimation of lithium ion batteries based on charging profiles. Energy 177, 57–65 (2019). https://doi.org/10.1016/j.jpowsour.2019.227401

    Article  Google Scholar 

  4. Bian, X., Liu, L., Yan, J., et al.: An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: model development and validation. J. Power Sources 448, 227401 (2020). https://doi.org/10.1016/j.energy.2019.04.070

    Article  Google Scholar 

  5. Bian, X., Wei, Z., He, J., et al.: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3044779

    Article  Google Scholar 

  6. Li, S., Wang, B., Peng, H., et al.: An electrochemistry-based impedance model for lithium-ion batteries. J. Power Sources 258, 9–18 (2014)

    Article  Google Scholar 

  7. Ruan, H., He, H., Wei, Z., et al.: State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction. IEEE J. Emerg. Sel. Top. Power Electron. (2021). https://doi.org/10.1109/JESTPE.2021.3098836

    Article  Google Scholar 

  8. He, J., Wei, Z., Bian, X., et al.: State-of-health estimation of Lithium-Ion batteries using incremental capacity analysis based on voltage-capacity model. IEEE Trans. Transp. Electrif. 6(2), 417–426 (2020). https://doi.org/10.1109/TTE.2020.2994543

    Article  Google Scholar 

  9. Wei, J., Dong, G., Chen, Z.: Remaining useful life prediction and state of health diagnosis for Lithium-Ion batteries using particle filter and support vector regression. IEEE Trans. Industr. Electron. 65(7), 5634–5643 (2018)

    Article  Google Scholar 

  10. Nuhic, A., Terzimehic, T., Soczka-Guth, T., et al.: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 239, 680–688 (2013)

    Article  Google Scholar 

  11. Zhou, Y., Huang, M.: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron. Reliab. 65, 265–273 (2016)

    Article  Google Scholar 

  12. Bai, G., Wang, P., Hu, C., et al.: A generic model-free approach for lithium-ion battery health management. Appl. Energy 135, 247–260 (2014)

    Article  Google Scholar 

  13. He, Z., Gao, M., Ma, G., et al.: Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks. J. Power Sources 267, 576–583 (2014)

    Article  Google Scholar 

  14. Piao, C., Li, Z., Lu, S., et al.: Analysis of real-time estimation method based on hidden markov models for battery system states of health. J. Power Electron. 16(1), 217–226 (2016)

    Article  Google Scholar 

  15. Zhou, Y., Huang, M., Chen, Y., et al.: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J. Power Sources 321(6), 1–10 (2016)

    Article  Google Scholar 

  16. Liu, D., Zhou, J., Liao, H., et al.: A Health Indicator Extraction and Optimization Framework for Lithium-Ion Battery Degradation Modeling and Prognostics. IEEE Trans. Syst. Man Cybern.: Syst. 45(6), 915–928 (2015)

    Article  Google Scholar 

  17. Feng, H., Song, D.: A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction. J. Energy Storage 34, 102118 (2021)

    Article  Google Scholar 

  18. Wang, R., Feng, H.: Remaining useful life prediction of lithium-ion battery using a novel health indicator. Qual. Reliab. Eng. Int. 37(3), 1232–1243 (2021)

    Article  Google Scholar 

  19. Schwunk, S., Armbruster, N., Straub, S., et al.: Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries. J. Power Sources. 239, 705–710 (2013)

    Article  Google Scholar 

  20. Wang, R., Feng, H.: Lithium-ion batteries remaining useful life prediction using Wiener process and unscented particle filter. J. Power Electron. 20, 270–278 (2020)

    Article  Google Scholar 

  21. Dong, G., Yang, F., Wei, Z., et al.: Data-driven battery health prognosis using adaptive brownian motion model. IEEE Trans. Industr. Inf. 16(7), 4736–4746 (2020)

    Article  Google Scholar 

  22. Dong, G., Chen, Z., Wei, J., et al.: Battery health prognosis using brownian motion modeling and particle filtering. IEEE Trans. Industr. Electron. 65(11), 8646–8655 (2018)

    Article  Google Scholar 

  23. Li, X., Wang, Z., Zhang, L., et al.: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis. J. Power Sources 410–411, 106–114 (2019)

    Article  Google Scholar 

  24. Li, X., Wang, Z., Yan, J., et al.: Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. J. Power Sources 421, 56–67 (2019)

    Article  Google Scholar 

  25. Li, X., Yuan, C., Wang, Z., et al.: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. J. Power Sources 467, 228358 (2020)

    Article  Google Scholar 

  26. Yang, D., Zhang, X., Pan, R., et al.: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. J. Power Sources 384, 387–395 (2018)

    Article  Google Scholar 

  27. Liu, D., Pang, J., Zhou, J., et al.: Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 53(6), 832–839 (2013)

    Article  Google Scholar 

  28. Liang, J., Shi, J., Wen, Y., et al.: SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators. Energies 13(2), 375 (2020)

    Article  Google Scholar 

  29. Goebelk, S., Saxena, A., et al.: Prognostics in battery health management. IEEE Instrum. Meas. Mag. 11(4), 33–40 (2008)

    Article  Google Scholar 

  30. Bole, B., Kulkarni, C.S., Daigle, M.: Adaptation of an electrochemistry-based Li-ion battery model to account for deterioration observed under randomized use. SGT. Inc. Moffett. Field, United States (2014). https://doi.org/10.36001/phmconf.2014.v6i1.2490

    Article  Google Scholar 

  31. Tosun, N.: Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis. Int. J. Adv. Manuf. Technol. 28(5–6), 450–455 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Basic Research Program of Shaanxi (program No.2021JZ -19) and the National Natural Science Foundation of China (program No.61877067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoling Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Shi, G. SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression. J. Power Electron. 21, 1845–1854 (2021). https://doi.org/10.1007/s43236-021-00318-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00318-5

Keywords

Navigation