Skip to main content

Advertisement

Log in

Palaeodepositional conditions of Permian organic-carbon-rich deposits of the Helgeland Basin, offshore mid Norway, based on elemental proxies and core logging

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The Permo-Triassic organic-carbon-rich rocks (OCRs) offshore mid Norway have been poorly studied and their depositional conditions are not well understood. This study used core logging and analysis of elemental proxies to investigate these rocks based on core 6611/9-U-01 from offshore mid Norway to understand their depositional conditions. Element concentrations were measured using a portable X-ray fluorescence scanner whereby 23 elements have been linked to depositional conditions, grain size distributions and flow processes. Results show that the analysed interval contains four major fining upward cycles dominated by variable amounts of gravity flow deposits and (hemi-)pelagic mudstones. The combination of elemental distributions and facies suggests that the OCRs were formed during periods of anoxia. The OCRs are contained in parts of the sedimentary sequence with significant slump deposits suggesting sediment reworking. A possible explanation for this is that the slumps might have re-transported the organic-rich sediment to the deeper basinal areas where anoxia was well developed, and consequently resulted in preservation of the organic matter. In this study, the environmental conditions of the OCRs have been identified even when this signal is mixed with the element signal caused by variations of grain sizes. This is shown by independence of the concentrations of redox proxies (S, Pb, and Mo) and palaeoproductivity proxies (Ba, Cu, Ni, and Zn), and grainsize distributions reflected by Nd, Pr, Ce, La, Zr, Rb, Fe, and Cl concentrations. An example to this observation is the variation of S content, which is high in both coarse- and fine-grained intervals implying that redox conditions were not influenced by grain size variations. Similarly, palaeoproductivity, based on Ba values, was more or less uniform across the studied interval despite the observed grain size variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The used datasets are available to any researcher upon formal request to authors of this work.

References

  • Adams, C., Brand, C., Dentith, M., Fiorentini, M., Caruso, S., & Mehta, M. (2020). The use of pXRF for light element geochemical analysis: a review of hardware design limitations and an empirical investigation of air, vacuum, helium flush and detector window technologies. Geochemistry: Exploration, Environment, Analysis, 20(3), 366–380. https://doi.org/10.1144/geochem2019-076

    Article  CAS  Google Scholar 

  • Algeo, T. J., & Maynard, J. B. (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206(3–4), 289–318. https://doi.org/10.1016/j.chemgeo.2003.12.009

    Article  CAS  Google Scholar 

  • Arthur, M. A., Dean, W. E., & Stow, D. A. V. (1984). Models for the deposition of Mesozoic-Cenozoic fine-grained organic-carbon-rich sediment in the deep sea. Geological Society, London, Special Publications, 15(1), 527–560. https://doi.org/10.1144/GSL.SP.1984.015.01.34

    Article  Google Scholar 

  • Blystad, P., Brekke, H., Færseth, R. B., Larsen, B. T., Skogseid, J., & Tørudbakken, B. (1995). Structural elements of the Norwegian continental shelf. Part II: The Norwegian Sea Region. NPD-BULLETIN, No, 8, 5–7.

    Google Scholar 

  • Brekke, H., Sjulstad, H.I., Magnus, C., &Williams, W.R. (2001). Sedimentary environments offshore Norway - an overview. In: O.J. Martinsen and T. Dreyer (eds.): Sedimentary Environments Offshore Norway-Palaeozoic to Recent, Norwegian Petroleum Society, Special Publication 10, 7–37. https://doi.org/10.1016/S0928-8937(01)80006-0.

  • Brumsack, H.-J. (2006). The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344–361. https://doi.org/10.1016/j.palaeo.2005.05.011

    Article  Google Scholar 

  • Bugge, T., Ringås, J. E., Leith, D. A., Mangerud, G., Weiss, H. M., & Leith, T. L. (2002). Upper Permian as a new play model on the mid-Norwegian continental shelf: Investigated by shallow stratigraphic drilling. American Association of Petroleum Geologists, Bulletin, 86(1), 107–127. https://doi.org/10.1306/61EEDA4E-173E-11D7-8645000102C1865D

    Article  CAS  Google Scholar 

  • Calvert, S. E., & Pedersen, T. F. (1992). Organic carbon accumulation in marine sediments: How important is anoxia? In J. K. Whelan & J. W. Farrington (Eds.), Productivity, accumulation and preservation of organic matter in recent and ancient sediments (p. 533). Columbia University Press.

    Google Scholar 

  • Calvert, S. E., & Pedersen, T. F. (1993). Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113(1–2), 67–88. https://doi.org/10.1016/0025-3227(93)90150-T

    Article  CAS  Google Scholar 

  • Calvert, S. E., & Pedersen, T. F. (2007). Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Developments in Marine Geology, 1, 567–644. https://doi.org/10.1016/S1572-5480(07)01019-6

    Article  Google Scholar 

  • Christiansen, F.G., Dam, G., Piasecki, S., & Stemmerik, L. (1992). A review of Upper Palaeozoic and Mesozoic source rocks from onshore East Greenland. In Spencer, A.M. (ed.): Generation, Accumulation and Production of Europe's Hydrocarbons II. European Association of Petroleum Geoscientists, Special Publication 2, 151–161.

  • Christiansen, F. G., Piasecki, S., Stemmerik, L., & Telnæs, N. (1993). Depositional environment and organic geochemistry of the upper Permian Ravnefjeld formation source rock in east Greenland. American Association of Petroleum Geologists, Bulletin, 77(9), 1519–1537. https://doi.org/10.1306/BDFF8EDE-1718-11D7-8645000102C1865D

    Article  CAS  Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353, 294–313. https://doi.org/10.1016/j.jhydrol.2008.02.015

    Article  CAS  Google Scholar 

  • de Graciansky, P. C., Deroo, G., Herbin, J. P., Jacquin, T., Magniez, F., Montadert, L., Müller, C., Ponsot, C., Schaaf, A., & Sigal, J. (1986). Ocean-wide stagnation episodes in the Late Cretaceous. Geologische Rundschau, 75(1), 17–41. https://doi.org/10.1007/BF01770176

    Article  Google Scholar 

  • Demaison, G., & Moore, G. T. (1980). Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists, Bulletin, 64, 1179–1209. https://doi.org/10.1306/2F91945E-16CE-11D7-8645000102C1865D

    Article  CAS  Google Scholar 

  • Dymond, J., & Collier, R. (1996). Particulate barium fluxes and their relationships to biological productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 43(4–6), 1283–1308. https://doi.org/10.1016/0967-0645(96)00011-2

    Article  CAS  Google Scholar 

  • Dymond, J., Suess, E., & Lyle, M. (1992). Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7(2), 163–181. https://doi.org/10.1029/92PA00181

    Article  Google Scholar 

  • Felix, M., Leszczyński, S., Ślączka, A., Uchman, A., Amy, L., & Peakall, J. (2009). Field expressions of the transformation of debris flows into turbidity currents, with examples from the Polish Carpathians and the French Maritime Alps. Marine and Petroleum Geology, 26(10), 2011–2020. https://doi.org/10.1016/j.marpetgeo.2009.02.014

    Article  Google Scholar 

  • Felix, M., & Peakall, J. (2006). Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments. Sedimentology, 53(1), 107–123. https://doi.org/10.1111/j.1365-3091.2005.00757.x

    Article  Google Scholar 

  • Francois, R. (1988). A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet sediments, British Columbia, Canada. Marine Geology, 83(1–4), 285–308. https://doi.org/10.1016/0025-3227(88)90063-1

    Article  CAS  Google Scholar 

  • Friis, H., Poulsen, M. L., Svendsen, J. B., & Hamberg, L. (2007). Discrimination of density flow deposits using elemental geochemistry-Implication for subtle provenance differentiation in a narrow submarine canyon, Palaeogene, Danish North Sea. Marine and Petroleum Geology, 24(4), 221–235. https://doi.org/10.1016/j.marpetgeo.2007.02.001

    Article  Google Scholar 

  • Gabrielsen, R. H., Odinsen, T., & Grunnaleite, I. (1999). Structuring of the Northern Viking Graben and the Møre Basin; the influence of basement structural grain, and the particular role of the Møre-Trøndelag Fault Complex. Marine and Petroleum Geology, 16(5), 443–465. https://doi.org/10.1016/S0264-8172(99)00006-9

    Article  Google Scholar 

  • Gazley, M. F., Duclaux, G., Fisher, L. A., Tutt, C. M., Latham, A. R., Hough, R. M., De Beer, S. J., & Taylor, M. D. (2014). A comprehensive approach to understanding ore deposits using portable X-ray fluorescence (pXRF) data at the Plutonic Gold Mine, Western Australia. Geochemistry: Exploration, Environment, Analysis, 15(2–3), 113–124. https://doi.org/10.1144/geochem2014-280

    Article  CAS  Google Scholar 

  • Guarnieri, P., Brethes, A., & Rasmussen, T. M. (2017). Geometry and kinematics of the Triassic rift basins in Jameson Land (East Greenland). Tectonics, 36(4), 602–614. https://doi.org/10.1002/2016TC004419

    Article  Google Scholar 

  • Haughton, P., Davis, C., McCaffrey, W., & Barker, S. (2009). Hybrid sediment gravity flow deposits-classification, origin and significance. Marine and Petroleum Geology, 26(10), 1900–1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012

    Article  Google Scholar 

  • Holser, W. T. (1997). Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography, Palaeoclimatology, Palaeocology, 132, 309–323. https://doi.org/10.1016/S0031-0182(97)00069-2

    Article  Google Scholar 

  • Hussain, A., Haughton, P. D., Shannon, P. M., Turner, J. N., Pierce, C. S., Obradors-Latre, A., Barker, S. P., & Martinsen, O. J. (2020). High-resolution X-ray fluorescence profiling of hybrid event beds: Implications for sediment gravity flow behaviour and deposit structure. Sedimentology, 67(6), 2850–2882. https://doi.org/10.1111/sed.12722

    Article  Google Scholar 

  • Jacot des Combes, H., Caulet, J.-P., & Tribovillard, N. P. (1999). Pelagic productivity changes in the equatorial area of the northwest Indian Ocean during the last 400,000 years. Marine Geology, 158(1–4), 27–55. https://doi.org/10.1016/S0025-3227(98)00163-7

    Article  Google Scholar 

  • Jones, B., & Manning, D. A. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129. https://doi.org/10.1016/0009-2541(94)90085-X

    Article  Google Scholar 

  • Kiswaka, E.B., & Felix, M.(2020b). Permo–Triassic sedimentary fills and tectonic phases off Mid Norway: Seismic investigation of the Trøndelag Platform. Norwegian Journal of Geology, 100, 202009. https://doi.org/10.17850/njg100-2-3.

  • Kiswaka, E. B., & Felix, M. (2020a). Norwegian Sea area Permo-Triassic organic-carbon-rich deposits from seismic. Marine and Petroleum Geology, 119, 104463. https://doi.org/10.1016/j.marpetgeo.2020.104463

    Article  CAS  Google Scholar 

  • Lemiere, B. (2018). A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. Journal of Geochemical Exploration, 188, 350–363.

    Article  CAS  Google Scholar 

  • Macquaker, J. H. S., & Gawthorpe, R. L. (1993). Mudstone lithofacies in the Kimmeridge Clay Formation, Wessex Basin, Southern England: Implications for the origin and controls of the distribution of mudstones. Journal of Sedimentary Petrology, 63(6), 1129–1143.

    Google Scholar 

  • McManus, J., Berelson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K. H., Anderson, R. F., Kumar, N., Burdige, D. J., Hammond, D. E., Brumsack, H. J., & McCorkle, D. C. (1998). Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochimica Et Cosmochimica Acta, 62(21–22), 3453–3473.

    Article  CAS  Google Scholar 

  • Meckler, A. N., Schubert, C. J., Hochuli, P. A., Plessen, B., Birgel, D., Flower, B. P., Hinrichs, K. U., & Haug, G. H. (2008). Glacial to Holocene terrigenous organic matter input to sediments from Orca Basin, Gulf of Mexico—A combined optical and biomarker approach. Earth and Planetary Science Letters, 272(1–2), 251–263. https://doi.org/10.1016/j.epsl.2008.04.046

    Article  CAS  Google Scholar 

  • Miller, E. L., Soloviev, A. V., Prokopiev, A. V., Toro, J., Harris, D., Kuzmichev, A. B., & Gehrels, G. E. (2013). Triassic river systems and the paleo-Pacific margin of northwestern Pangea. Gondwana Research, 23(4), 1631–1645.

    Article  CAS  Google Scholar 

  • Müller, R., Nystuen, J.P., & Lie, H. (2005). Late Permian to Triassic basin infill history and palaeogeography of the Mid-Norwegian shelf-East Greenland Region. In B.T.G. Wandås, J.P. Nystuen, E. Eide, F. Gradstein (eds.): Onshore-Offshore Relationships on the North Atlantic Margin, Norwegian Petroleum Society, Special Publications 12, 165–189. https://doi.org/10.1016/S0928-8937(05)80048-7.

  • Parks, J. M. (1966). Cluster analysis applied to multivariate geologic problems. The Journal of Geology, 74(5), 703–715. https://doi.org/10.1086/627205

    Article  Google Scholar 

  • Piasecki, S., & Stemmerik, L. (1991). Late Permian anoxia in central East Greenland. In R. V. Tyson and T. H. Pearson (eds.): Modern and Ancient Continental Shelf Anoxia, Geological Society, London, Special Publication 58, 275–290. https://doi.org/10.1144/GSL.SP.1991.058.01.18.

  • Poulsen, M.L., Friis, H., Svendsen, J.B., Jensen, C.B., & Bruhn, R. (2007). The application of bulk rock geochemistry to reveal heavy mineral sorting and flow units in thick, massive gravity flow deposits, Siri Canyon Palaeocene Sandstones, Danish North Sea. In M. Mange and D. Wright (Eds.): Heavy minerals in use, Developments in Sedimentology, 58, 1099–1121. https://doi.org/10.1016/S0070-4571(07)58043-X.

  • Prosser, S. (1993). Rift-related linked depositional systems and their seismic expression. In G. D. Williams and A. Dobb (eds.): Tectonics and Seismic Sequence Stratigraphy, Geological Society, London, Special Publication 71, 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03.

  • Ravnås, R., Nøttvedt, A., Steel, R.J., & Windelstad, J. (2000). Syn-rift sedimentary architectures in the Northern North Sea. In A. Nøttvedt (ed.): Dynamics of the Norwegian Margin, Geological Society, London, Special Publications 167, 133–177. https://doi.org/10.1144/GSL.SP.2000.167.01.07.

  • Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift-basin successions. American Association of Petroleum Geologists, Bulletin, 82(1), 110–146. https://doi.org/10.1306/1D9BC3A9-172D-11D7-8645000102C1865D

    Article  Google Scholar 

  • Rouillon, M., & Taylor, M. P. (2016). Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Environmental Pollution, 214, 255–264. https://doi.org/10.1016/j.envpol.2016.03.055

    Article  CAS  Google Scholar 

  • Sabatier, P., Dezileau, L., Briqueu, L., Colin, C., & Siani, G. (2010). Clay minerals and geochemistry record from northwest Mediterranean coastal lagoon sequence: Implications for paleostorm reconstruction. Sedimentary Geology, 228(3–4), 205–217. https://doi.org/10.1016/j.sedgeo.2010.04.012

    Article  CAS  Google Scholar 

  • Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E., & Algeo, T. J. (2015). Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews, 149, 23–52. https://doi.org/10.1016/j.earscirev.2014.08.017

    Article  CAS  Google Scholar 

  • Scholle, P. A., Stemmerik, L., Ulmer-Scholle, D. A. N. A., Liegro, G. D., & Henk, F. H. (1993). Paleokarst-influenced depositional and diagenetic patterns in Upper Permian carbonates and evaporites, Karstryggen area, central East Greenland. Sedimentology, 40(5), 895–918. https://doi.org/10.1111/j.1365-3091.1993.tb01368.x

    Article  Google Scholar 

  • Seidler, L., Steel, R. J., Stemmerik, L., & Surlyk, F. (2004). North Atlantic marine rifting in the Early Triassic: New evidence from East Greenland. Journal of the Geological Society, 161(4), 583–592. https://doi.org/10.1144/0016-764903-063

    Article  Google Scholar 

  • Shand, C. A., & Wendler, R. (2014). Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31–42. https://doi.org/10.1016/j.gexplo.2014.03.005

    Article  CAS  Google Scholar 

  • Stemmerik, L., Christiansen, F.G., Piasecki, S., Jordt, B., Marcussen, C., & Nøhr-Hansen, N. (1993). Depositional history and petroleum geology of the Carboniferous to Cretaceous sediments in the northern part of East Greenland. In T.O. Vorren, E. Bergsager, Ø.A. Dahl-Stamnes, E. Holter, B. Johansen, E. Lie, T.B. Lund (eds.): Arctic Geology and Petroleum Potential, Norwegian Petroleum Society, Special Publications 2, 67–87. https://doi.org/10.1016/B978-0-444-88943-0.50009-5.

  • Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey, Bulletin, 180, 43–54. https://doi.org/10.34194/ggub.v180.5085

    Article  Google Scholar 

  • Surlyk, F., Piasecki, S., Rolle, F., Stemmerik, L., Thomsen, L., & Wrang, P. (1984). The Permian Base of East Greenland. In Spencer A.M. (ed.): Petroleum Geology of the North European Margin, Springer, Dordrecht, 303–315. https://doi.org/10.1007/978-94-009-5626-1_22.

  • Surlyk, F., Hurst, J. M., Piasecki, S., Rolle, F., Scholle, P. A., Stemmerik, L., & Thomsen, E. (1986). The Permian of the Western Margin of the Greenland Sea-A future Exploration Target. In M. T. Halbouty (ed.): Future Petroleum Provinces of the World, American Association of Petroleum Geologists Memoir 40, 629–659.

  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2), 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012

    Article  CAS  Google Scholar 

  • Tyson, R.V., 2005. The “productivity versus preservation” controversy: cause, flaws, and resolution. In: Harris, N.B. (Ed.), The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. SEPM Special Publication, 82, 17–33. https://doi.org/10.2110/pec.05.82.0017.

  • van der Weijden, C. H. (2002). Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology, 184(3–4), 167–187. https://doi.org/10.1016/S0025-3227(01)00297-3

    Article  Google Scholar 

  • Von Breymann, M.T., Emeis, K.C., & Suess, E. (1992). Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator. In C. P. Summerhayes, W. L. Prell and K. C. Emeis (eds.): Upwelling Systems: Evolution Since the Early Miocene, Geological Society, London, Special Publications 64(1), 273–284. https://doi.org/10.1144/GSL.SP.1992.064.01.18.

Download references

Acknowledgements

This work was funded by EnPe-Norad under the ANTHEI (Angola Tanzania Higher Education Initiative) scholarship scheme. Comments from Mai Britt E. Mørk, Atle Mørk, Ron Steel and Snorre Olaussen as well as reviewer R.H. Hota and anonymous reviewers helped to improve the manuscript.

Funding

This research did not receive any specific grant from funding agencies other than a PhD scholarship (EnPe-Norad under the ANTHEI) to the first author.

Author information

Authors and Affiliations

Authors

Contributions

EBK: conceptualization, elemental data acquisition, core logging, data analysis, preparation of figures, writing original draft, final review and submission. MF: conceptualization, data analysis, preparation of figures, text editing, final manuscript review, and supervision. AN: conceptualization, text editing, final manuscript review, and supervision.

Corresponding author

Correspondence to Emily Barnabas Kiswaka.

Ethics declarations

Conflict of interest

The authors of this work declare that they have no known financial, political, or personal relationships that could have appeared to influence the presented results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiswaka, E.B., Felix, M. & Næss, A. Palaeodepositional conditions of Permian organic-carbon-rich deposits of the Helgeland Basin, offshore mid Norway, based on elemental proxies and core logging. J. Sediment. Environ. 9, 217–238 (2024). https://doi.org/10.1007/s43217-024-00167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-024-00167-9

Keywords

Navigation