Skip to main content
Log in

Chemical composition of garnet and ilmenite from stream sediments and soil applied to diamond fertility investigation: the kimberlite intrusion of Ariquemes, Rondonia (Brazil)

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

In exploratory programs for kimberlites focused at discovering diamond deposits, it is important to identify tools that define their fertility. The observation of mineral indices such as garnet and ilmenite is the first indication of the proximity of kimberlite intrusion, and the possibility of using these minerals as fertility proxys through mineral chemistry allows us to characterize the presence of diamonds in kimberlite. In this work, mineral chemistry data in garnets and ilmenites concentrated in streams and soil were carried out to investigate the kimberlite intrusion from Ariquemes, State of Rondônia, northern Brazil, is reported. Ilmenite occurred exhibiting reaction bands for leucoxene, suggesting two phases in evolution during kimberlite ascension and inplacement. All garnets formed in rocks in the presence of clinopyroxene present a composition consistent with the G9 group. In these terms, it is concluded that the studied body is non-fertile and that the results reported here of the chemical compositions with respect to both garnets and ilmenites, indicate the sterility of the Ariquemes kimberlite intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Tassinari and Macambira (1999)

Fig. 3
Fig. 4

Modified from Quadros and Rizzotto (2007)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

All data generated or analyses during this study are included in this published article.

References

  • Agee, J. J., Garrinson, J. R., Jr., & Taylor, L. A. (1982). Petrogenesis of oxide minerals in kimberlite, Elliott County Kentucky. American Mineralogist., 67, 28–42.

    Google Scholar 

  • Akella, J., Rao, P. S., McCallister, R. H., Boyd, F. R., & Meyer, H. O. A. (1979). Mineralogical studies on the diamondiferous kimberlites of Wajrajkarur area, south India. In F. R. Boyd & H. O. A. Meyer (Eds.), Kimberlites, Diatremes and Diamonds: their Geology, Petrology and Geochemistry (Vol. 1, pp. 172–177). American Geophysical Union.

    Chapter  Google Scholar 

  • Almeida, F. F. M. (1986). Alguns problemas das relações geológicas entre o Cráton Amazônico e as faixas de dobramentos marginais a leste. In: SIMP. GEOL. CENTROOESTE, 2. Goiânia, 1986. Aias... Goiânia, 1986. Goiânia, SBG. v. l, p. 3-4.

  • Almeida, B. S., Geraldes, M. C., Sommer, C. A., Corrales, F., & Paes de Barros, A. J. (2021). The Colider and Roosevelt olcanic rocks (sw amazonian craton): Geochemistry and sm-nd isotope characteristics of a silicic large igneous province. Acta Geochimica. https://doi.org/10.1007/s11631-021-00490-2

    Article  Google Scholar 

  • Amaral, G. (1974). Geologia Pré-Cambriana da Região Amazônica. Tese, Inst. Geoc. Univ. S. Paulo. p. 212

  • Amorim, J. L. (2002). O Complexo Jamari na região de Ariquemes, Estado de Rondônia: implicações para a evolução geodinânica da porção sudoeste do Cráton Amazônico. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 41, 2002, João Pessoa. Anais. João Pessoa: SBGN Nordeste, 702p. p. 287.

  • Arsenyev, A. A. (1962). Laws of the distribution of kimberlites in the eastern part of the Siberian platform. Dokl Akad Nauk USSR Earth Sci Sect, 137, 355–357.

    Google Scholar 

  • Aulbach, S., Jacob, D. E., Cartigny, P., Stern, R. A., Simonetti, S. S., Wörner, G., & Viljoen, K. S. (2017). Eclogite xenoliths from Orapa: Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin. Geochimica Et Cosmochimica Acta, 213, 574–592.

    Article  Google Scholar 

  • Bardet, M.G. (1977). Géologie du Diamant. Troisime partie: Gisements de diamants d’Asie, d’Amérique, d’Europe et d’Australasie. Memorires Du B.R.G.M. no. 83, p 169.

  • Bettencourt, J. S., Tosdal, R. M., Leite, W. R., Jr., & Payokka, B. L. (1999). Mesoproterozoic rapakivi granites of Rondônia Tin Province, southwestern border of Amazonian craton, Brazil-I. Reconnaissance U–Pb geochronology and regional implications. Precambrian Research, 95, 41–67.

    Article  Google Scholar 

  • Bizzi, L. A., Schobbenhaus, C., Gonçalves, J. H., Baars, F. J., Delgado, I. M., Abram, M. B., Leão Neto, R., Gerson M. M. M., Santos, J. O. S. (2001). Geologia, Tectônica e Recursos Minerais do Brasil: Sistema de Informações Geográficas – SIG e Mapas na Escala 1:2 500 000; Geology, Tectonics and Mineral Resources of Brazil: Geographic Information System – GYS and Maps at the 1: 2 500 000 scale, Brasília, CPRM, 4 CD-ROM

  • Boyd, F. R., & Gurney, J. J. (1982). Low-calcium garnets key to craton structure and diamond crystallization. Carnegie Institution of Washington Yearbook, 81, 261–267.

    Google Scholar 

  • Braga, L. G., Pierosan, R., & Geraldes, M. C. (2019). Paleoproterozoic (~ 2.0 Ga) volcano-plutonism in the southeastern region of the Amazon Craton: Petrological aspects and geotectonic implications. Geological Journal, 55(6), 4352–4374.

    Article  Google Scholar 

  • Buerger, M. J. (1956). The determination of the crystal structure of pectolite, Ca2NaHSi309. Zeitschrift Fur Kristallographie, 108S, 248–262.

    Article  Google Scholar 

  • Buerger, M. J., & Prewitt, C. T. (1961). The crystal structures of wollastonite and pectolite. Proceedings of the National Academy of Sciences of the United States of America, 47, 1884–1888.

    Article  Google Scholar 

  • Bussweiler, Y., Pearson, D. G., Stachel, T., & Kjarsgaard, B. A. (2018). Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada—implications for the origin of clinopyroxene and garnet in cratonic lherzolites. Mineralogy and Petrology, 112, S583–S596.

    Article  Google Scholar 

  • Castro, C.C., Palmeira, L.C.M., Cunha, L.M., & Silveira, F.V., (2011). Projeto diamante Brasil: a Província Kimberlítica de Rondônia. In: 12° Simpósio de Geologia da Amazônia. Boa Vista - RR, Brasil. SBG, Resumos, CD-ROM.

  • Chaves, M.L.S.C. (1997). Geologia e mineralogia do diamante da Serra do Espinhaço em Minas Gerais.Belo Horizonte. Tese (Doutorado em Geociências) Instituto de Geociências, Universidade de São Paulo, 289 p.

  • Clement, C.R., & Skinner, E.M.W. (1979). A textural genetic classification ok Kimberlite rocks. Kimberlite Symposium II, Cambridge (Extended Abstracts).

  • Clement, C. R., & Skinner, E. M. W. (1985). A textural-genetic classification of kimberlites. Transactions Geological Society of South Africa, 88, 403–409.

    Google Scholar 

  • Clement, C. R., Skinner, E. M. W., & Scott-Smith, B. H. (1984). Kimberlite redefined. Journal of Geology, 92, 223–228.

    Article  Google Scholar 

  • Clifford, T. N. (1966). Tectono-metallogenic units and metallogenic provinces of Africa. Earth and Planetary Science Letters., 1, 421–434.

    Article  Google Scholar 

  • Cordani, U. G., Tassinari, C. C. G., Teixeira, W., Basei, M. A. S., & Kawashita, K. (1979). Evolução tectônica da Amazônia com base nos dados geocronologicos. Segundo Congresso Geológico Chileno. Arica, Chile. Anais. p.13–-148.

  • Dardene, M.A., de Alvarenga, C.J.S., de Okiveira, C.G., & Lenharo, S.L.R. (2005). Geologia e metalogenia do depósito de Cobre do Graben do Colorado, Fossa Tectônica de Rondônia, Brasil. In: Marini, O.J., Queiroz, E.T. de, Ramos, B.W. (Coords.). Caracterização de Depósitos Minerais em Distritos Mineiros da Amazônia. Brasília: DNPM-CT-Mineral/FINEP—ADIMB, 2005. Cap. IX, pp 557–596.

  • Darrdene, M. A., & Schobbenhaus, C. (2001). Metalogênese do Brasil (p. 392). UNB/CPRM.

    Google Scholar 

  • de Wit, M. C. J. (2018). Prospecting history leading to the discovery of Botswana’s diamond mines: From artefacts to Lesedi La Rona. Mineralogy and Petrology, 112, 7–22.

    Article  Google Scholar 

  • Debowski, B. P., Alves, M. I., Santos, A. C., Dias-Tavares, A., Jr., & Geraldes, M. C. (2019). Contribution to the understanding of the Rondonia Tin Province granites (SW Amazonian Craton) origin using U–Pb and Lu–Hf in zircon by LA-ICPMS: implications to A-type granite genesis. Journal of the Geological Survey of Brazil, 2(3), 151–164.

    Article  Google Scholar 

  • Debowski, B. P., Costa, A. S., Santos, W., & Geraldes, M. C. (2018). Petrografia e Litogeoquímica dos Maciços Massangana, São Carlos e Caritianas Pertencentes aos Granitos mais Jovens da Província Estanífera de Rondônia Petrography and Litogeochemistry Analyses of Massangana, São Carlos and Caritianas Massifs belonging to Youngest Granites of the Rondonia Tin Province. Anuario Do Instituto De Geociencias., 41, 395–412. https://doi.org/10.11137/2018_3_395_412

    Article  Google Scholar 

  • Deer, W. A., Howie, R. A., & Zussman, J. (1963). Rock-forming minerals. Single-chain silicates (Vol. 2, p. 379). The Geological Society.

    Google Scholar 

  • do Quadros, M.L.E.S., & Rizzotto, G.J. (2007). Geologia e Recursos minerais do Estado de Rondônia: Sistema de Informações Geográficas—SIG: Texto explicativo do mapa geológico e de Recursos Minerais do Estado de Rondônia. Porto Velho: CPRM, 153 F. Escala 1:1.000.000.

  • Fitzpayne, A., Giuliani, A., Hergt, J., Phillips, D., & Janney, P. (2018). New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos, 318, 478–493.

    Article  Google Scholar 

  • Fitzpayne, A., Giuliani, A., Hergt, J., Woodhead, J. D., & Maas, R. (2020). Isotopic nalyses of clinopyroxenes demonstrate the effects of kimberlite melt metasomatism upon the lithospheric mantle. Lithos, 370, 105595.

    Article  Google Scholar 

  • Fitzpayne, A., Giuliani, A., Maas, R., Hergt, J., Janney, P., & Phillips, D. (2019). Progressive metasomatism of the mantle by kimberlite melts: Sr–Nd–Hf–Pb isotope compositions of MARID and PIC minerals. Earth and Planetary Science Letters, 509, 15–26.

    Article  Google Scholar 

  • Geraldes, M. C., Nogueira, C., Vargas-Matos, G., Matos, R., Teixeira, W., Valencia, V., & Ruiz, J. (2014). U–Pb detrital zircon ages from the Aguapeí Group (Brazil): Implications for the geological evolution of the SW border of the Amazonian Craton. Precambrian Research, 244, 306–316. https://doi.org/10.1016/j.precamres.2014.02.001

    Article  Google Scholar 

  • Geraldes, M. C., Teixeira, W., & Heilbron, M. (2004). Lithospheric versus asthenospheric source of the SW Amazonian craton A-types granites: the role of the Paleo- and Mesoproterozoic accretionary belts for their coeval continental suites. Episodes, 27(3), 1–5. https://doi.org/10.18814/epiiugs/2004/v27i3/005

    Article  Google Scholar 

  • Geraldes, M. C., Van Schmus, W. R., Condie, K. C., Bell, S., Teixeira, W., & Babinski, M. (2001). Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso State, Brazil. Precambrian Research, 111, 91–128.

    Article  Google Scholar 

  • Giuliani, A. (2018). Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos, 312, 322–342.

    Article  Google Scholar 

  • Godoy, A. M., Manzno, J. C., Araujo, L. M. B., & Silva, J. A. (2009). Contexto geológico e estrutural do Maciço Rio Apa, sul do cráton amazônico – MS. Geociências, 28(4), 485–499.

    Google Scholar 

  • Gregory, R. T., & Taylor, H. P. (1981). An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research: Solid Earth, 86, 2737–2755. https://doi.org/10.1029/jb086ib04p02737

    Article  Google Scholar 

  • Gumey, J. J. (1989). Diamonds. Geological Society of Australia Special Publication., 14(2), 935–965.

    Google Scholar 

  • Gurney, J. J. (1984). A correlation between garnets and Diamonds in kimberlites. In J. E. Glover & P. G. Harris (Eds.), Kimberlite Occurrence an Origin: A basis for conceptual models in exploration (Vol. 8, pp. 143–166). The Geology Departament and University Extension The University of Western Australia.

    Google Scholar 

  • Haggerty, S. E. (1975). The chemistry and genesis os opaque minerals in kimberlites. In L. H. Ahrens, J. B. Dawson, A. R. Duncan, & A. J. Erlank (Eds.), Physics and Chemistry of the Earth, 9 (pp. 295–307). Elsevier.

    Chapter  Google Scholar 

  • Haggerty, S. E. (1986). Diamond genesis in a multiply constrained model. Nature, 320, 34–38.

    Article  Google Scholar 

  • Haggerty, S. E., Smyth, J. R., Erlank, A. J., Rickard, R. S., & Danchin, R. V. (1983). Lindsleyite (Ba) and mathiasite (K): two new chromium–titanates in the crichtonite series from the upper mantle. American Mineralogist., 68(5–6), 494–505.

    Google Scholar 

  • Harte, B., Gurney, J. J., & Harris, J. W. (1980). The formation of peridotite suite inclusion in diamond. Contribution to Mineralogy and Petrology, 72, 181–190.

    Article  Google Scholar 

  • Hatton, C.J. (1978). Geochemistry and origino of xenolths from the Roberts Victor mine. Ph.D. Thesis. University of Cape Town.

  • Helmstaedt, H., & Gurney, J.J. (1984). Kimberlites of Southern Africa are they related to subduction processes? 3 International Kimberlite Conference Volume: I.

  • Howarth, G. H. (2018). Olivine megacryst chemistry, Monastery kimberlite: Constraints on themineralogy of the HIMU mantle reservoir in southern Africa. Lithos, 314, 658–668.

    Article  Google Scholar 

  • Hunt, L., Stachel, T., Morton, R., Grütter, H., & Creaser, R. A. (2009). The Carolina kimberlite, Brazil—insights into an unconventional diamond deposit. Lithos, 112S, 843–851.

    Article  Google Scholar 

  • Isotta, C. A. L., Carneiro, J. M., Kato, H. T., & Barros, R. J. L. (1978). Projeto província estanífera de Rondônia: relatórional. Porto Velho: DNPM/CPRM. v. 16. Disponível em: https://rigeo.cprm.gov.br/handle/doc/9652.

  • Janse, A. J. (1991). A. Is Clifford’s Rule still valid? Affirmative examples from around the World//Proceedeng of the Fifth International Kimberlite Conference, Araxa, Brazil Volume 2. Diamonds: Characterization, Genesis and Exploration//CPRM Special Publication. Brasilia: Compania de Pescuisa de Recursos Minerais. 1B, pp 215–235.

  • Kargin, A. V., Sazonova, L. V., Nosova, A. A., Lebedeva, N. M., Tretyachenko, V. V., & Abersteiner, A. (2017). Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: Relation to clinopyroxene-phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts. Lithos, 292, 34–48.

    Article  Google Scholar 

  • Leal, J.W. L., Silva, G.H., Santos, D.B., Teixeira, W., Lima, L.I.C., Fernandes, C.A.C., & Into, A.C. (1978). Geologia. In: BRASIL. Departamento Nacional da Produção Mineral. Projeto RADAMBRASIL. Folha SC.20 Porto Velho; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio deJaneiro, . v.16. 663 p. (Levantamento de Recursos Naturais, 16). 17–184.

  • Leite Junior, W. B., Payolla, B. L., Bettencourt, J. S., & Dias, C.A.T. (2014). 1.38-Ga A-type granites related to theevolution of the Rondonian-San Ignacio orogenic system, SW Amazonian Craton, Brazil: a geochemical overview. Comunicações Geológicas. Porto: IX CNG/2º CoGeLiP.101, n. Especial I, 125–129: https://www.lneg.pt/wp-content/uploads/2020/03/23_2971_ART_CG14_ESPECIAL_I.pdf.

  • Lewis, H. C. (1888). The matrix of diamond. Geological Magazine, 5, 129–131.

    Google Scholar 

  • Masun, K. M., & Scott Smith, B. H. (2008). The Pimenta Bueno kimberlite field, Rondônia, Brazil: Tuffisitic kimberlite and transitional textures. Journal of Volcanology and Geothermal Research, 174, 81–89.

    Article  Google Scholar 

  • Meyer, H. O. A., & Svisero, D. P. (1975). Mineral inclusions in Brazilian diamonds. Physics and Chemistry of the Earth, 9, 785–795.

    Article  Google Scholar 

  • Mitchell, R. H. (1986). Kimberlites—Mineralogy, Geochemistry, and Petrology (p. 442). Plenum Press.

    Google Scholar 

  • Moore, A. E., & Costin, G. (2016). Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst suites. Lithos, 258, 215–217.

    Article  Google Scholar 

  • Pafernoff, A. (1982). Um mineral traceur pour La prospection alluvionaire: L´ilménite relations entre ilménites magnésiennes, basaltes alcalins, kimberlites et diamant. Documents du B.R.G.M., 37, p 215.

  • Payolla, B. L., Bettencourt, J. S., Kozuch, M. L., Junior, W. B., Fetter, A. H., & Van Schumus, W. R. (2002). Geological evolution of the basement rocks in the east-central part of the Rondonia Tin Province, SW Amazonian craton, Brazil: U–Pb and Sm–Nd isotopic constraints. Precambrian Research, 119, 141–169.

    Article  Google Scholar 

  • Pereira, R. M. (2003). Fundamentos de Prospecção Mineral. Editora Interciencia.

    Google Scholar 

  • Pereira, R.M.; Santos, R.A.A., & Neves, J.L.P. (1994). Prospecção à bateia na borda oriental da região sudeste do Brasil: primeiros resultados. In: CONGRESSO BRASILEIRO GEOLOGIA, 38., 1994, Balneário Camboriú. Boletim de Resumos Expandidos..., Balneário Camboriú: Sociedade Brasileira Geologia. v.2, pp 197–198.

  • Reed, S. J. B. (2006). Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (2nd ed., p. 232). Cambridge University Press.

    Google Scholar 

  • Rizzotto, G.J., do Quadros, M.L.E.S. (2005). Geologia do sudoeste do Craton Amazôico. In: Horbe, A.M.C.; Souza, V. da S. (Coords.). Contribuições à Geologia da Amazônia. Belém: SBG-Núcleo Norte, v.4, pp 69–84.

  • Rodrigues, C. S., & Lima P. R. A. S. (1984). Complexos Carbonatiticos do Brasil: Geologia Companhia Brasileira de Metalurgia e Mineração, p. 44

  • Santos, J. O. S., Hartman, L. A., Gaudette, H. E., Groves, D. I., McNaughton, N. J., & Flrcher, I. R. (2000). New understanding of the Amazon Craton provinces, based on field work radiogenic isotope data. Gondwana Research, 3, 453–488.

    Article  Google Scholar 

  • Scandolara, J. E. (2006). Geologia e Evolução do Terreno Jamari, Embasamento da Faixa Sunsás/Aguapeí, Centro Leste de Rondônia, Sudoeste do Cráton Amazônico. Tese de doutorado no. 78. Universidade de Brasília, Instituto de Geociências.

  • Scandolara, J. E., Fuck, R. A., Dall’agnol, R., & Dantas, E. L. (2013). Geochemistry and origin of the early Mesoproterozoic mangerite–charnockite–rapakivi granite association of the Serra da Providência suite and associated gabbros, central–eastern Rondônia, SW Amazonian Craton, Brazil. Journal of South America Earth Sciences, 45, 166–193. https://doi.org/10.1016/j.jsames.2013.03.003

    Article  Google Scholar 

  • Scott Smith, B.H., Nowicki, T.E., Russell, J.K., Webb, K.J., Mitchell, R.H., Hetman, C.M., Harder, M., Skinner, E.M.W., & Robey, J.V., (2013). Kimberlite terminology and classification. In: Pearson, D.G. (Ed.), Proceedings of 10th International Kimberlite Conference, Special Issue of the Journal of the, vol. 2. Geological Society of India, pp. 1–17.

  • Scott Smith, B. H., Skinner, E. M. W., & Clement, C. R. (1983). Further data on the occurrence of pectolite in kimberlite. Mineralogical Magazine, 47, 75–78.

    Article  Google Scholar 

  • Silva Santos, F., Pierosan, R., Barros, M., César Geraldes, M., & Faustino-de-Lima, M. (2018). Petrology of the Colíder Group volcanic successions in the northernmost Mato Grosso, Brazil: A contribution to the knowledge of the felsic volcanism of the Alta Floresta Gold Province. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2018.10.007

    Article  Google Scholar 

  • Sobolev, N. V. (1977). Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. American Geophysical Union. (Transl D.A, Brown) Ed. F.R. Boyd.

    Book  Google Scholar 

  • Stamm, N., & Schmidt, M. W. (2017). Asthenospheric kimberlites: Volatile contents and bulk compositions at 7 GPa. Earth and Planetary Science Letters, 474, 309–321.

    Article  Google Scholar 

  • Tassinari, C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B., & Lafon, J.M. (2000). The Amazon craton. In: Cordani, U., Milani, E.J., Thomaz Filho, A., Campos, D.A. (Eds). Tectonic evolution of South America. XXXI International Geological Congress, Rio de Janeiro, Brazil, 41–95.

  • Tassinari, C. C. G., Cordani, U. G., Nutman, A. P., Van Schmus, W. R., Bettencourt, J. S., & Taylor, P. N. (1996). Geochronological systematics on basement rocks from the Rio Negro Juruena Province (Amazonian Craton) and tectonic implications. International Geology Review, 38, 161–175.

    Article  Google Scholar 

  • Tassinari, C. C. G., & Macambira, M. J. B. (1999). Geochronological provinces of amazonian craton. Episodes, 22, 174–182.

    Article  Google Scholar 

  • Tassinari, C.C.G., & Macambira, M.J.B. (2004). A evolução tectônica do Craton Amazônico. In: V. Mantesso-Neto; A. Bartorelli; C.R. Carneiro and B.B. Brito-Neves (eds.): Geologia do Continente Sul-Americano, Chapter. XXVIII, 471–485.

  • Teixeira, W., Geraldes, M. C., Matos, R., Ruiz, A. S., Saes, G., & Vargas-Mattos, G. (2010). A review of the tectonic evolution of the Sunsás belt, SW Amazonian Craton. Journal of South American Earth Sciences, 29, 47–60.

    Article  Google Scholar 

  • Teixeira, W., & Tassinari, C.C.G. (1984). Caracterização geocronológica da província Rondoniana e suas implicações geotectônicas. In: Simpósio Amazônico, 2, Manaus. SBG/DNPM, Atas, pp 87–91.

  • Teixeira, W., Tassinari, C. C. G., Cordani, U. G., & Kawashita, K. (1989). A review of the geochronology of the amazonian craton: tectonic implications. Precambrian Research, 42, 213–227.

    Article  Google Scholar 

  • Tompkin, L., & Gonzaga, G. M. (1989). Diamonds in Brazil and proposed model for the origin and distribution of diamond in the Coromandel region, Minas Gerais, Brazil. Economic Geology, 84, 591–602.

    Article  Google Scholar 

  • Weska, R. K., & Svisero, D. P. (2001). Uma síntese doconhecimento sobre as rochas de natureza kimberlíca da porção sul do Cráton Amazônico, no Estado de Mato Grosso. In J. S. Bettencourt, W. Teixeira, I. G. Pacca, M. C. Geraldes, & I. Sparremberger (Eds.), Simposio de Estado da Arte do SW do Craton Amazonico (p. 235). Anais.

    Google Scholar 

  • Wyatt, B.A. (1978) Phase relationships in the system picroilmenite- clinopyroxene—Cr2O3: A preliminary assessment. In: Progress in Experimental Petrology, National Enviroment Research Council, publication series no. 11, pp 181–185.

  • Zolinger, I.T. (2005). As instrusões de afinidade kimberlítica E1 e Es1 da Região de Colorado do Oeste, Rondônia. 2005. Tese (Doutorado em Mineralogia e Petrologia). Instituto de Geociências, Universidade de São Paulo, São Paulo, p 130.

Download references

Acknowledgements

The location of the kimberlite body was only possible with the help of a mining requirement report issued by the mining company METALMIG, influenced by visits from specialized companies in the field, in the 1990s. The present work was possible with the help of technicians from the company METALMIG to carry out the bore holes and sediment streams concentrations. MCG would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for the research grant (process # 301470/2016-2). Virginia Martins would like to thank the CNPq and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ for the research grants (process #302676/2019-8 and process #202.927/2019, respectively).

Author information

Authors and Affiliations

Authors

Contributions

KM data acquisition, formal analysis, writing—original draft, methodology. MVAM investigation, writing—original draft. MCG conceptualization, data curation, funding acquisition, investigation.

Corresponding author

Correspondence to Mauro Cesar Geraldes.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by S. Bergamaschi

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Supplementary file2 (XLSX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahon, K., Martins, M.V.A. & Geraldes, M.C. Chemical composition of garnet and ilmenite from stream sediments and soil applied to diamond fertility investigation: the kimberlite intrusion of Ariquemes, Rondonia (Brazil). J. Sediment. Environ. 7, 317–334 (2022). https://doi.org/10.1007/s43217-022-00095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-022-00095-6

Keywords

Navigation