Skip to main content

Petrography, clay mineralogy and geochemistry of Lower Gondwana sandstones of Western Arunachal Pradesh Himalayas, India

Abstract

Extra-Peninsular Gondwana rocks of Arunachal Himalaya are an interbedded sequence between Sub-Himalayan Siwaliks and Lesser Himalayan Bomdila Group of rocks. This unit is restricted to the area between Sikkim and Arunachal Pradesh representing the only extra-peninsular Gondwana basin affected by the Himalayan orogeny and denotes a significantly different tectonic set up than other basins. This work aims to study the petrological and geochemical signatures of these Gondwana rocks and to decipher the provenance, tectonic setting, palaeoclimatic and weathering conditions in the period when these rocks were formed. The clay mineral identification and abundances also were studied based on relative intensities (I/I1) of different clay minerals. Petrologically, and geochemically the sandstones are classified as wacke to arkose type. The tectonic discrimination diagrams indicate that the sediments are derived from craton interior to quartzose recycled orogen terranes with more contribution from low-rank metamorphic rocks. In addition, geochemical characteristics obtained from the tectonic discrimination plots point to a passive margin basin configuration. The dominance of illite and smectites indicate towards a palaeoalkaline environment of deposition for Gondwana sediments. Major oxide study reveals a humid palaeoenvironment and medium to intense chemical weathering of source rocks. The high ratio between Light Rare Earth Elements (LREE) and Heavy Rare Earth Elements (HREE) (average 3.72), (La/Yb)N (average 9.01) and La/Th (average 2.29) values, together with negative Eu anomaly (Eu/Eu* is 0.44–0.90) also indicate a post-Archean granitic source rock for the detritus of Gondwana sandstones.

This is a preview of subscription content, access via your institution.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

Availability of data and material

Available.

Code availability

Not applicable.

References

  1. Absar, N., Nizamudheen, B. M., & Sminto, A. (2016). Petrography, clay mineralogy and geochemistry of clastic sediments of Proterozoic Bhima Group, Eastern Dharwar Craton, India: Implications for provenance and tectonic setting. Journal of Applied Geochemistry, 18(3), 237–250.

    Google Scholar 

  2. Absar, N., & Sreenivas., B. . (2015). Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: evidence for active margin processes. International Geology Review, 57(2), 134–158. https://doi.org/10.1080/00206814.2014.999355.

    Article  Google Scholar 

  3. Acharyya, S. K., Ghosh, S. C., Ghosh, R. N., & Shah, S. C. (1975). The continental Gondwana Group and associated marine sequence of Arunachal Pradesh (NEFA) Eastern Himalaya. Himalayan Geology, 5, 60–80.

    Google Scholar 

  4. Baruah, P. K. (2004). Provenance and depositional environment of eastern Himalayan Gondwana Rocks of Siang District, Arunachal Pradesh. Journal of the Geological Society of India, 63, 440–448.

    Google Scholar 

  5. Basu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, G. H. (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz provenance interpretation. Journal of Sedimentary Petrology, 45, 873–882.

    Google Scholar 

  6. Bhuyan, D., & Borgohain, P. (2013). Palynodebris analysis and palynological approach to depositional environment of the Permian Gondwana Rocks of West Kameng District, Arunachal Himalayas. Journal of Earth Science. Sp. Vol., 247–252.

  7. Blatt, H. (1967). Provenance determination and recycling of sediments. Journal of Sedimentary Petrology, 37, 1037–1044.

    Google Scholar 

  8. Blatt, H., Middleton, G., & Murray, R. (1980). Origin of sedimentary rocks [M] (2nd ed., p. 782). Prentice-Hall.

    Google Scholar 

  9. Boggs, S., Jr. (2009). Petrology of sedimentary rocks (2nd ed., p. 600). Cambridge University Press.

    Book  Google Scholar 

  10. Borah, A. D., & Sarmah, R. K. (2013). Petrography and clay mineralogy of Dafla and Subansiri formations (Siwalik Group) of the area between Bhalukpong and Elephant of West Kameng District, Arunachal Pradesh. Journal of Earth Science. Spl. Vol, 81–94.

  11. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.

    Article  Google Scholar 

  12. Crook, K. A. W. (1974). Lithogenesis and Geotectonics: The significance of compositional variation in Flyscharenites (greywackes). Society of Economical, Palaeontological and Mineralogical Special Publications, 19, 304–310. https://doi.org/10.2110/pec.74.19.0304.

    Article  Google Scholar 

  13. Das, A. K., Bakliwal, P. C., & Dhoundial, D. P. (1975). A brief outline of the geology of parts of Kameng district. NEFA, Miscellaneous Publication, Geological Survey of India, 24(Pt.1), 115–127.

    Google Scholar 

  14. Datta, B. (2005). Provenance, tectonics and palaeoclimate of Proterozoic Chandarpur sandstones, Chhattisgarh basin: A petrographic view. Journal of Earth System Science, 114(3), 227–245. https://doi.org/10.1007/BF02702947.

    Article  Google Scholar 

  15. DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P., & Upreti, B. N. (2001). Stratigraphy, structure, and tectonic evolution of the Himalayan fold–thrust belt in western Nepal. Tectonics, 20, 487–509. https://doi.org/10.1029/2000TC001226.

    Article  Google Scholar 

  16. Dickinson, W. R. (1970). Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology, 40(2), 695–707.

    Google Scholar 

  17. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G. Zuffa (Ed.), Provenance of Arenites (pp. 333–361). D Reidel Publishing Company.

    Chapter  Google Scholar 

  18. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Fergusion, R. C., Inman, K. F., Knepp, R. A., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235. https://doi.org/10.1130/0016-7606(1983)94%3c222:PONAPS%3e2.0.CO;2.

    Article  Google Scholar 

  19. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone composition. AAPG Bulletin., 63, 2164–2182.

    Google Scholar 

  20. Dott, R. H., Jr. (1964). Wacke, greywacke and matrix—What approach to immature sandstone classification? Journal of Sedimentary Petrology, 34, 625–632.

    Google Scholar 

  21. Du, H. F., Zhu, Z. J., Jiang, Y. B., Yang, T. N., Liu, Y. X., & Guo, F. S. (2011). Petrologic characteristics and provenance analysis of sandstones of Gonjo Formation in Nangqen Basin. Acta Petrologica Et Mineralogica, 30, 401–408.

    Google Scholar 

  22. Du, Y. L., Li, S. Y., Kong, W. L., & Wang, S. (2010). Sandstone detrital composition and provenance analysis of the permian longtan formation in South eastern Anhui Province. Geological Journal of China Universities, 16, 509–516.

    Google Scholar 

  23. Ekosse, G. (2001). Provenance of the Kgwakgwe kaolin deposit in south eastern Bostwana and its possible utilization. Applied Clay Science, 20, 137–152. https://doi.org/10.1016/S0169-1317(01)00064-3.

    Article  Google Scholar 

  24. Etemad-Saeed, N., Hosseini-Barzi, M., & Armstrong-Altrin, J. S. (2011). Petrography and geochemistry of clastic sedimentary rocks as evidence for provenance of the Lower Cambrian Lalun Formation, Posht-e-Badam block, Central Iran. Journal of African Earth Sciences, 61, 142–159. https://doi.org/10.1016/j.jafrearsci.2011.06.003.

    Article  Google Scholar 

  25. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO;2.

    Article  Google Scholar 

  26. Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the devonian Gramscatho Basin South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society (london), 144, 531–542. https://doi.org/10.1144/gsjgs.144.4.0531.

    Article  Google Scholar 

  27. Fyffe, L. R., & Pickerill, R. K. (1993). Geochemistry of upper cambrian-lower ordovician black shale along a northeastern Appalachian transect. Bulletin of Geological Society of America, 105, 897–910. https://doi.org/10.1130/0016-7606(1993)105%3c0897:GOUCLO%3e2.3.CO;2.

    Article  Google Scholar 

  28. Ganai, J. A., & Rashid, S. A. (2015). Rare earth element geochemistry of the Permo-Carboniferous clastic sedimentary rocks from the Spiti Region, Tethys Himalaya: Significance of Eu and Ce anomalies. Chinese Journal of Geochemistry, 43(4), 252–264. https://doi.org/10.1007/s11631-015-0045-7.

    Article  Google Scholar 

  29. Goswami, T. K., Mahanta, B. N., Mukherjee, S., Syngai, B. R., & Sarmah, R. K. (2020). Orogen transverse structures in the eastern Himalaya: Dextral Riedel shear along the Main Boundary Thrust in the Garu-Gensi area (Arunachal Pradesh, India), implication in hydrocarbon geoscience. Marine and Petroleum Geology, 114, 104242. https://doi.org/10.1016/j.marpetgeo.2020.104242.

    Article  Google Scholar 

  30. Govil, P. K. (1985). X-ray fluorescence analysis of major, minor and selected trace elements in new IWG reference rock samples. Journal of the Geological Society of India, 26, 38–42.

    Google Scholar 

  31. GSI (2010). Geology and Mineral Resources of Arunachal Pradesh, Geological Survey of India, Miscellaneous Publication, 30, No. IV (I), 54p.

  32. Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322. https://doi.org/10.1016/0037-0738(88)90137-6.

    Article  Google Scholar 

  33. Hayashi, K. I., Fujisawa, H., Holland, D., & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador Canada. Geochimica Et Cosmochimica Acta, 61, 4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7.

    Article  Google Scholar 

  34. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865Dhttp://www.gsi.gov.in, Accessed 19 Aug 2019.

  35. Ingersoll, R. V. (1990). Actualistic Sandstone Petrofacies: Discriminating modern and ancient source rocks. Geology, 18(8), 733–736. https://doi.org/10.1130/0091-7613(1990)018%3c0733:ASPDMA%3e2.3.CO;2.

    Article  Google Scholar 

  36. Jacobson, A. D., Blum, J. D., Chamberlian, C. P., & Koons, P. O. (2003). Climate and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica Et Cosmochimica Acta, 37, 29–46. https://doi.org/10.1016/S0016-7037(02)01053-0.

    Article  Google Scholar 

  37. Jalal, P., & Ghosh, S. K. (2012). Provenance of the Late Neogene Siwalik sandstone, Kumaun Himalayan Foreland Basin: Constraints from the metamorphic rank and index of detrital rock fragments. Journal of Earth System Science, 121(3), 781–792. https://doi.org/10.1007/s12040-012-0189-3.

    Article  Google Scholar 

  38. Kumar, G. (1997). Geology of Arunachal Pradesh (p. 217). Geological Society of India.

    Google Scholar 

  39. Laul, V. P., Khan, A. S., & Sinha, N. K. (1986). Final report on Gondwana of Arunachal Pradesh, Progress Report, Geological Survey of India, FS. 1984–1985.

  40. Mahanta, B. N., Sarmah, R. K., & Goswami, T. K. (2019). Elucidation of provenance, Palaeoclimatic and tectonic setting of the Gondwana Sandstones of Arunachal Himalayas: A Petrographic Approach. Journal of the Geological Society of India, 94, 260–266. https://doi.org/10.1007/s12594-019-1305-7.

    Article  Google Scholar 

  41. Mahanta, B. N., Sekhose, K., Goswami, T. K., Vitso, V., Sarmah, R. K., Kumar, A., & Kumar, R. (2021). Depositional setup of the faunal coal balls from Bichom Formation of LOWER Gondwana group of Arunachal Himalaya: Insights from EPMA and Raman spectroscopy. Journal of Sedimentary Environments. https://doi.org/10.1007/s43217-020-00042-3.

    Article  Google Scholar 

  42. Mahanta, B. N., Syngai, B. R., Sarmah, R. K., Goswami, T. K., & Kumar, A. (2020). Geochemical signatures of lower Gondwana sandstones of eastern Arunachal Himalayas, India; implications for tectonic setting, provenance, and degree of weathering. Russian Journal of Earth Sciences, 20, ES2003. https://doi.org/10.2205/2020ES000698.

    Article  Google Scholar 

  43. Mana, S. C. A., Hanafiah, M. M., & Chowdhury, A. J. K. (2017). Environmental characteristics of clay and clay-based minerals. Geology, Ecology, and Landscapes, 1(3), 155–161. https://doi.org/10.1080/24749508.2017.1361128.

    Article  Google Scholar 

  44. Maulana, A., Yonezu, K., & Watanabe, K. (2014). Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island Indonesia. Journal of Earth Science, 25(3), 460–472. https://doi.org/10.1007/s12583-014-0449-z.

    Article  Google Scholar 

  45. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Review of Mineralogy, 21, 169–200. https://doi.org/10.1515/9781501509032-010.

    Article  Google Scholar 

  46. McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 4. https://doi.org/10.1029/2000GC000109.

    Article  Google Scholar 

  47. McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America (special Paper), 285, 21–40. https://doi.org/10.1130/SPE284-p21.

    Article  Google Scholar 

  48. McLennan, S. M., Nance, W. B., & Taylor, S. R. (1980). Rare earth element-thorium correlations in sedimentary rocks and the composition of the continental crust. Geochimica et Cosmochimica Acta, 44(11), 1833–1839. https://doi.org/10.1016/0016-7037(80)90232-X.

  49. Nayak, B., Singh, A. K., Upadhyay, A. K., & Bhattacharyya, K. K. (2009). A note on the characters of some Lower Gondwana coals of West Siang District in the Arunachal Himalaya and their trace element content. Journal of the Geological Society of India, 74, 395–401. https://doi.org/10.1007/s12594-009-0138-1.

    Article  Google Scholar 

  50. Nesbitt, H. W., & Young, G. M. (1982). Early proterozoic climates and plate motions inferred from major elemental chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0.

    Article  Google Scholar 

  51. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trend of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochimica Et Cosmochimica Acta, 48, 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3.

    Article  Google Scholar 

  52. Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242. https://doi.org/10.1098/rspl.1895.0041.

    Article  Google Scholar 

  53. Peterson, J. A. (2009). Geochemical provenance of clastic sedimentary rocks in the Western Cordillera: Utah, Colorado. Wyoming and Oregon. M. S. Thesis, Utah State University, Utah, USA, 109 p.

  54. Pettijohn, F. J., Potter, P. E., & Siever, R. (1973). Sand and sandstone. Springer.

    Book  Google Scholar 

  55. Prakash, A., Singh, T., & Srivastava, S. C. (1988). Occurrence of faunal coal balls in Gondwana sediments (Permian) of Arunachal Himalaya India. International Journal of Coal Geology, 9, 305–314. https://doi.org/10.1016/0166-5162(88)90019-5.

    Article  Google Scholar 

  56. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone and mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94(5), 635–650. http://www.jstor.org/stable/30078330.

  57. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009-2541(88)90010-1.

    Article  Google Scholar 

  58. Sarma, K. P., Bhattacharjee, S., Nandy, S., Konwar, P., & Mazumder, N. (2014). Structure, stratigraphy and magnetic susceptibility of bomdila gneiss, Western Arunachal Himalaya, India. Journal of the Geological Society of India, 84, 544–554. https://doi.org/10.1007/s12594-014-0162-7.

    Article  Google Scholar 

  59. Singer, A. (1980). The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15, 303–326. https://doi.org/10.1016/0012-8252(80)90113-0.

    Article  Google Scholar 

  60. Singh, T. (1987). Permian biogeography of the Indian subcontinent with special reference to the marine fauna. In I. Mackenzic & D. Garry (Eds.), Gondwana 6, Geophysical monograph (Vol. 41, pp. 141–194). American Geophysical Union.

    Google Scholar 

  61. Sreenivas, B., Balaram, V., & Srinivasan, R. (1995). Trace and rare earth element contamination during routine preparation of sample powders for geochemical studies—Effects of grinding tools. Indian Journal of Geology, 66, 296–304.

    Google Scholar 

  62. Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and palaeoclimate, I. Framework mineral. Journal of Sedimentary Petrology, 56, 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  63. Taylor, S. R., & McLennan, S. M. (1985). The continental crust; its composition and evolution. Blackwell.

    Google Scholar 

  64. Teresa, D. (2012). Clay minerals as Palaeo environmental indicators in the Bathonian (middle Jurassic) ore-bearing clays from Gnaszyn, Krakow-Silesia Homocline. Acta Geologica Polonica, 62, 297–305. https://doi.org/10.2478/v10263-012-0016-9.

    Article  Google Scholar 

  65. Thiry, M. (2000). Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth-Science Reviews, 49(1–4), 201–221. https://doi.org/10.1016/S0012-8252(99)00054-9.

    Article  Google Scholar 

  66. Tomita, K., Masato, K., Masahiko, Y., & Noboru, O. (1980). A regularly interstratified mineral of chlorite-montmorillonite in an altered andesite from Kinzan, Kagoshima Prefecture. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 76, 213–220.

  67. Tortosa, A., Palomares, M., & Arribas, J. (1991). Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis; In: A. C. Morton, S. P. Todd, & P. D. W. Haughton (Eds.), Developments in Sedimentary Provenance Studies (No. 57, pp. 47–54). Geological Society of London, Special Publication.

  68. Tripathi, C., & Roy Chowdhury, J. (1983). Gondwanas of Arunachal Himalaya. Himalayan Geology, 11, 73–89.

    Google Scholar 

  69. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica Et Cosmochimica Acta, 51, 2401–2416. https://doi.org/10.1016/0016-7037(87)90293-6.

    Article  Google Scholar 

  70. Yuan, Y., & Wang, H. (2016). Sedimentary Petrology characteristics and their implications for provenance of flowerpot basin Jurassic system in Yanqing County, Beijing. Journal of Geoscience and Environment Protection., 4, 69–79. https://doi.org/10.4236/gep.2016.46006.

    Article  Google Scholar 

Download references

Acknowledgements

MG and TKG received financial assistance from International Geological Congress Secretariat, New Delhi (IGC-2020) (Letter No. 36th IGC Sectt./Field Trips/2018/20.29. dated: 05.11.2018) for conducting the field work for the field trip traverse (NER-001) which is gratefully acknowledged. BNM, RL, HS and BO thankfully acknowledge the logistics and infrastructural support provided by the Additional Director General, GSI, NER, Shillong. The two anonymous reviewers and the Editor-in-chief, Prof. Maria Virgínia Alves Martins are thanked for the constructive comments.

Funding

MG and TKG received financial assistance from International Geological Congress Secretariat, New Delhi (IGC-2020) (Letter No. 36th IGC Sectt./Field Trips/2018/20.29. dated: 05.11.2018) for conducting the field work for the field trip traverse (NER-001).

Author information

Affiliations

Authors

Contributions

MG: field data collection, writing original draft, methodology and software; RKS: conceptualisation and methodology; TKG: conceptualisation and methodology; BNM: field data collection, writing original draft and methodology; RL: field data collection; HS: field data collection; BO: field data collection.

Corresponding author

Correspondence to Mousumi Gogoi.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. V. Alves Martins

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gogoi, M., Sarmah, R.K., Goswami, T.K. et al. Petrography, clay mineralogy and geochemistry of Lower Gondwana sandstones of Western Arunachal Pradesh Himalayas, India. J. Sediment. Environ. (2021). https://doi.org/10.1007/s43217-021-00070-7

Download citation

Keywords

  • Sediments
  • Provenance
  • Rare earth elements
  • Palaeoclimate
  • Palaeoenvironment