Skip to main content
Log in

Rare earth element geochemistry of the Permo-Carboniferous clastic sedimentary rocks from the Spiti Region, Tethys Himalaya: significance of Eu and Ce anomalies

  • Original Article
  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Siliciclastic sedimentary rocks, including sandstones and associated shales, from the Permo-Carboniferous Kanawar Group of NW Tethys Himalaya, Spiti Region, India were examined geochemically to monitor the evolutionary changes in the upper continental crust in the Himalaya. The rocks are characterized by consistent rare earth element (REE) patterns with light REE enrichment (LaN/YbN = 5.3–28.2) and flat heavy REE patterns. The ∑REE values are high (up to 281 ppm) with large negative Eu anomalies (avg. Eu/Eu* = 0.57). The REE characteristics of the sediments are similar to those of post-Archean Australian shales and North American shale composite. La/Th values (avg. 2.34) correspond to a relatively felsic composition of the terrestrial igneous rocks standard (La/Th of G-1 = 2.3). The evolved felsic composition of the sediments probably relates to widespread acidic activity in the source. The REE patterns and Th/U values seem to have been affected by the sedimentary environment as well as by the provenance. The presence of positive Ce anomalies in some sediments may be the result of post-depositional processes. Moreover, the Permo-Carboniferous sediments indicate that hydraulic sorting, even over short transport distances, is capable of concentrating enough accessory phases to influence REE composition and to develop negative Eu anomalies. High ∑REE, La/Yb, and Th/U contents and large negative Eu anomalies reveal that the sediments were deposited in an oxidizing environment, suggesting the surficial environment became oxidizing around the Carboniferous-Permian boundary in the Indian craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagati TN (1990) Lithostratigraphy and facies variation in the Spiti Basin (Tethys) Himachal Pradesh India. Himalayan Geol 1:35–47

    Google Scholar 

  • Balaram V, Gnaneshwar Rao T (2003) Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. At Spectrosc 24:206–212

    Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213

    Article  Google Scholar 

  • Bhanot VB, Kwatra SK, Kansal AK (1988) Rb–Sr geochronological studies of granitic rocks of Galhar-Shasho area, Kishtwar region, Kashmir Himalaya, India. Fourth National Symposium on Mass Spectrometry, Indian Institute of Sciences, Bangalore. Earth Planet Sci 13:1–4

    Google Scholar 

  • Bhargava ON (2008) An updated introduction to the Spiti Geology. J Palaeontol Soc India 53:113–129

    Google Scholar 

  • Bhargava ON, Bassi UK (1998) Geology of Spiti-Kinnaur Himachal Himalaya. Geological Survey of India Memoir 124:1–210

  • Borges JB, Huh Y, Moon S, Noh H (2008) Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East. Chem Geol 254:52–72

    Article  Google Scholar 

  • Boryta M, Condie KC (1990) Geochemistry and origin of the Archaean Beit Bridge complex, Limpopo Belt, South Africa. J Geol Soc Lond 147:229–239

    Article  Google Scholar 

  • Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Cerium anomalies in lateritic profiles. Geochim Cosmochim Acta 51:597–605

    Google Scholar 

  • Compton JS, White RA, Smith M (2003) Rare earth element behavior in soils and salt pan sediments of a semiarid granitic terrain in the Western Cape, South Africa. Chem Geol 20:239–255

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Condie KC, Wilks M, Rosen DM, Zlobin VL (1991) Geochemistry of metasediments from the Precambrian Hapschan series, eastern Anabar Shield, Siberia. Precambrian Res 50:37–47

    Article  Google Scholar 

  • Condie KC, Marais DJD, Abbott D (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates. Precambr Res 106:239–260

    Article  Google Scholar 

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales siltstones and sandstones of Pennsylvanian Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Dabard MP, Loi A (2012) Environmental control on concretion-forming processes: examples from Paleozoic terrigenous sediments of the North Gondwana margin, Armorican Massif (Middle Ordovician and Middle Devonian) and SW Sardinia (Late Ordovician). Sed Geol 267:93–103

    Article  Google Scholar 

  • Dikshitulu GD, Pandey BK, Krishna V, Dhana Raju R (1995) Rb–Sr systematics on granitoids of the Central Gneissic Complex, Arunachal Himalaya: implications on tectonic, stratigraphy and source. J Geol Soc India 45:51–60

    Google Scholar 

  • Draganits E, Mawson R, Talent JA, Krystyn L (2002) Lithostratigraphy conodontbiostratigraphy and depositional environment of the Middle Devonian Givetian to Early Carboniferous Tournaisian Lipak Formation in the Pin Valley of Spiti, NW India. Riv Ital Paleontol Stratigr 108:7–35

    Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Frank W, Thoni M, Purtscheller F (1977) Geology and petrology of Kulu-South Lahul area. In: Himalayas, vol 268. Science de la Terre, C.N.R.S., Paris, pp 142–172

  • Gaetani M, Garzanti E (1991) Multicycle history of the northern India continental margin northwestern Himalaya. Am Assoc Pet Geol Bull 75:1427–1446

    Google Scholar 

  • Garzanti E, Angiolini L, Sciunnach D (1996) The mid-Carboniferous to lowermost Permian succession of Spiti Po Group and Ganmachidam formation Tethys Himalaya, northern India: Gondwana glaciation and rifting of Neo-Tethys. Geodin Acta 9:78–100

    Article  Google Scholar 

  • Garzanti E, Ando S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y (2010) Mineralogical and chemical variability of fluvial sediments. 1. Bed-load sand: Ganga-Brahmaputra, Bangladesh. Earth Planet Sci Lett 299:368–381

    Article  Google Scholar 

  • Garzanti E, Andó S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M (2011) Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt: Ganga-Brahmaputra, Bangladesh. Earth Planet Sci Lett 302:107–120

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Rare earth elements in the NW Indian Ocean. Geochim Cosmochim Acta 54:1929–1940

    Article  Google Scholar 

  • Holser WT (1997) Geochemical events documented in inorganic carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 132:173–182

    Article  Google Scholar 

  • Javid AG, Rashid SA, Masroor Alam M, Balaram V, Sathyanarayanan M (2014) The geochemistry of Permo-Carboniferous black shales from Spiti region, Himachal Pradesh, Tethys Himalaya: a record of Provenance and change in climate. Himalayan Geol 35:31–39

    Google Scholar 

  • Kakuwa Y, Matsumoto R (2006) Cerium negative anomaly just before the Permian and Triassic boundary event: the upward expansion of anoxia in the water column. Palaeogeogr Palaeoclimatol Palaeoecol 229:335–344

    Article  Google Scholar 

  • Kato Y, Nakao K, Isozaki Y (2002) Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chem Geol 182:15–34

    Article  Google Scholar 

  • Kütterolf S, Diener R, Schacht U, Krawinkel H (2008) Provenance of the Carboniferous Hochwipfel Formation (Karawanken Mountains, Austria/Slovenia) Geochemistry versus petrography. Sed Geol 203:246–266

    Article  Google Scholar 

  • Lawrence MG, Kamber BS (2006) The behaviour of the rare earth elements during estuarine mixing – revisited. Mar Chem 100:147–161

    Article  Google Scholar 

  • Liu Y-G, Miah MRU, Schmitt RA (1988) Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52:1361–1371

    Article  Google Scholar 

  • Macleod KG, Irving AJ (1996) Correlation of cerium anomalies with indicators of paleoenvironment. J Sediment Res 66:948–955

    Google Scholar 

  • Mazumdar A, Banerjee DM, Schidlowski M, Balaram V (1999) Rare-earth elements and stable isotope geochemistry of early Cambrian chert phosphorite assemblages from the Lower Tal Formation of the Krol Belt, Lesser Himalaya, India. Chemical Geology 156:275–297

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Geochemistry and mineralogy of the rare earth elements. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:2000GC000109

  • Mclennan SM, Taylor SR (1980) Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature 285:621–624

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–21

    Article  Google Scholar 

  • McLennan SM, Nance WB, Taylor SR (1980) Rare earth element-thorium correlations in sedimentary rocks and the composition of the continental crust. Geochim Cosmochim Acta 44:1833–1839

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites—crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnnson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geological Society of America Special Paper 284, London, pp 21–40

  • McLennan SM, Bock B, Compston W, Hemming SR, McDaniel DK (2001) Detrital zircon geochronology of Taconian and Acadian foreland sedimentary rocks in New England. J Sediment Res 71:305–317

    Article  Google Scholar 

  • Mondal MEA, Zainuddin SM (1997) Geochemical characteristics of the granites of Bundelkhand massif, central India. J Geol Soc India Bangalore 50:69–74

    Google Scholar 

  • Moosavirad SM, Janardhana MR, Sethumadhav MS, Moghadam MR, Shankara M (2011) Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman provenance, Central Iran: Provenance, source weathering and Tectonic setting. Chem Erde 71:279–288

    Article  Google Scholar 

  • Murray RW, Buchholtz Ten Brink MR, Jones DL, Gerlach DC, Price Russ G (1990) Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology 18:268–271

    Article  Google Scholar 

  • Murray RW, Buchholz Ten Brink MR, Gerlach DC, Russ GP, Jones DL (1991) Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey Group: assessing REE sources to fine grained marine sediments. Geochim Cosmochim Acta 55:1875–1895

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Paulsen T, Williams I, Parcha SK, Thompson KR, Bowring SA, Peng SC, Ahluwalia AD (2003) Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212:433–441

    Article  Google Scholar 

  • Naqvi SM, Hussain SM (1972) Petrochemistry of early Precambrian meta-sediments from the central part of the Chital durg schist belt, Mysore, India. Chemical Geology 10:109–135

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 199:715–717

    Article  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalis and alkali earths during continental weathering. Geochim Cosmochim Acta 44:1659–1666

    Article  Google Scholar 

  • Raju BNV, Chab Ria T, Prasad RN, Mah Adevan TM, Bhalla NS (1982) Early Proterozoic Rb–Sr isochron age for Central Crystalline, Bhilangana valley, Garhwal Himalaya. Himal Geol 12:196–205

    Google Scholar 

  • Rao PS (1998) Kameng Orogeny, 1.8–1.9 Ga. from the isotopic evidence of the Bomdila orthogneisses, Kameng Sector, NEFA, India. Geol Bull Univ Peshawar 31:159–162

    Google Scholar 

  • Rashid SA (2005) The Geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara Formation, Kumaun Lesser Himalaya: implications for provenance, mineralogical control and weathering. Curr Sci 88:1832–1836

    Google Scholar 

  • Sciunnach D, Garzanti E (2012) Subsidence history of the Tethys Himalaya. Earth Sci Rev 111:179–198

    Article  Google Scholar 

  • Sharma KK (1983) Granitoid belts of the Himalaya. In: Shams FA (ed) Granites of Himalaya Karakoram and Hindukush. Institute of Geology, Punjab University, Lahore, pp 11–37

    Google Scholar 

  • Sharma KK, Rashid SA (2001) Geochemical evolution of Peraluminous Paleoproterozoic Bandal Orthogneiss, NW Himalaya, Himachal Pradesh, India: implications for the ancient crustal growth in the Himalaya. J Asian Earth Sci 19:413–428

    Article  Google Scholar 

  • Shields G, Stille P (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: isotopic and REE study of Cambrian phosphorites. Chem Geol 175:29–48

    Article  Google Scholar 

  • Sholkovitz ER, Shaw TJ, Schneider DL (1992) The geochemistry of rare earth elements in the seasonally anoxic water column and pore waters of Chesapeake Bay. Geochim Cosmochim Acta 56:3389–3402

    Article  Google Scholar 

  • Singh P (2010) Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem Geol 269:220–236

    Article  Google Scholar 

  • Singh P, Rajamani V (2001) REE geochemistry of recent clastic sediments from the Kaveri floodplains, Southern India: implication to source area weathering and sedimentary processes. Geochim Cosmochim Acta 65:3093–3108

    Article  Google Scholar 

  • Singh S, Sjoberg H, Classon S, Gee D, Jain AK (1993) New U-Pb Proterozoic data from Chor-Wangtu granitoids of Himalayan crystalline belt from Himachal, India. I: Seminar on Himalayan Geology and Geophysics, Abstract Volume Wadia Institute of Himalayan Geology, Dehradun, India, pp 55–56

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society of London, Special Publication 42, London, pp 313–334

  • Taylor SR, McLennan SM (1985) The continental crust, its composition and evolution. Blackwell, London

    Google Scholar 

  • Taylor SR, McLennan SM (1988) The significance of the rare earths in geochemistry and cosmochemistry. In: Gschneider KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare Earths, vol 11. Elsevier, New York, pp 485–578

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Treloar PJ, Rex DC (1990) Cooling and uplift histories of the crystalline thrust stack of the Indian plate internal zones west of Nanga Parbat, Pakistan Himalaya. Tectonophysics 180:323–349

    Article  Google Scholar 

  • Trivedi JR, Gopalan K, Valdiya KS (1984) Rb–Sr ages of granitic rocks within the Lesser Himalayan nappes, Kumaun, India. J Geol Soc India 25:641–654

    Google Scholar 

  • Valdiya KS (1995) Proterozoic sedimentation and Pan African geodynamic development in the Himalaya. Precambr Res 74:35–55

    Article  Google Scholar 

  • Wilde P, Quinby-Hunt MS, Erdtmann BD (1996) The whole rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sed Geol 101:43–53

    Article  Google Scholar 

  • Wright J, Schrader H, Holser WT (1987) Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim Cosmochim Acta 51:631–644

    Article  Google Scholar 

  • Wronkiewicz DJ, Condie KC (1990) Geochemistry and mineralogy of sediments from the Venters dorp and Transvaal Super groups, South Africa: cratonic evolution during the early Proterozoic. Geochim Cosmochim Acta 54:343–354

    Article  Google Scholar 

  • Yan QR, Geo SL, Wang ZQ, Li JL, Hou QL, Chen HL (2002) Geochemical constraints of the sediments on Provenance, Depositional environment and tectonic Setting of the songliao Prototype basin. Acta Geol Sinica 76:445–462

    Google Scholar 

  • Zeitler PK, Sutter JF, Williams IS, Zartman R, Tahirkheli RAK (1989) Geochronology and temperature history of the Nanga Parbat-Haramosh massif, Pakistan. In: Malinconico LL, Lillie RJ (eds) Tectonics of the western Himalayas. Geological Society of America Special Paper 232, pp 1–22

Download references

Acknowledgments

The authors express their thanks to the Chairman, Department of Geology, Aligarh Muslim University, Aligarh, for providing necessary facilities. We are also thankful to the Department of Science & Technology, New Delhi for supporting this research in the form of Research Grant (SR/S4/ES-422/2009) to SAR. Authors are really thankful to the anonymous reviewers who have reviewed the manuscript and given positive and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Ahmad Ganai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganai, J.A., Rashid, S.A. Rare earth element geochemistry of the Permo-Carboniferous clastic sedimentary rocks from the Spiti Region, Tethys Himalaya: significance of Eu and Ce anomalies. Chin. J. Geochem. 34, 252–264 (2015). https://doi.org/10.1007/s11631-015-0045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-015-0045-7

Keywords

Navigation