Skip to main content
Log in

Inkjet printing MoS2 nanosheets for hydrogen sensing applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

2D nanomaterials are of great interest in many modern applications. In particular, MoS2 nanomaterial with a narrow band gap of 1.8 eV is expected as one of the best candidates for low-cost gas sensors. To reduce the costs of scalable sensor production, inkjet printing technology has attracted much attention during the current transition period of the fourth industry. Here we report an economical hydrogen-sensor using inkjet-printed MoS2 nanosheets with Pd nanocatalyst (MoS2–Pd). Few-layer MoS2 nanosheets were synthesized via a mechanical exfoliation method, and Pd nanodots (as an Irish type) were formed using short e-beam evaporation. Our fabricated sensors based on MoS2–Pd have a small channel area of 5 × 300 µm, enabling superfast response and recovery of the sensors (~ 6.6 s) toward a wide range of hydrogen concentrations at 50 °C. With the high sensing performance and endurability, our inkjet-printed sensor devices are promising for practical hydrogen sensing and storing applications, and our study shows a valuable route to develop gas-sensitive inks for other analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.S. Kalanur, J. Heo, I.-H. Yoo, H. Seo, 2-D WO3 decorated with Pd for rapid gasochromic and electrical hydrogen sensing. Int. J. Hydrog. Energy 42, 16901–16908 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.172

    Article  CAS  Google Scholar 

  2. S.S. Kalanur, Y.J. Lee, H. Seo, A versatile synthesis strategy and band insights of monoclinic clinobisvanite BiVO4 thin films for enhanced photoelectrochemical water splitting activity. Appl. Surf. Sci. 562, 150078 (2021). https://doi.org/10.1016/j.apsusc.2021.150078

    Article  CAS  Google Scholar 

  3. Y.-A. Lee, L.T. Duy, S. Han, H. An, J. Park, R. Singh, H.Y. Kim, H. Seo, Confined interfacial alloying of multilayered Pd–Ni nanocatalyst for widening hydrogen detection capacity. Sens. Actuators B Chem. 330, 129378 (2021). https://doi.org/10.1016/j.snb.2020.129378

    Article  CAS  Google Scholar 

  4. Y.-A. Lee, S.-I. Han, H. Rhee, H. Seo, Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure. Appl. Surf. Sci. 440, 1244–1251 (2018). https://doi.org/10.1016/j.apsusc.2018.01.157

    Article  CAS  Google Scholar 

  5. S.S. Kalanur, H. Seo, Directing WO3 crystal growth towards artificial photosynthesis favorable 002 plane via aluminum incorporation in the lattice for enhanced water splitting. J. Alloy. Compd. 864, 158186 (2021). https://doi.org/10.1016/j.jallcom.2020.158186

    Article  CAS  Google Scholar 

  6. S.S. Kalanur, Y.J. Lee, H. Seo, Enhanced and stable photoelectrochemical H2 production using a engineered nano multijunction with Cu2O photocathode. Mater. Today Chem. 26, 101031 (2022). https://doi.org/10.1016/j.mtchem.2022.101031

    Article  CAS  Google Scholar 

  7. Y.-G. Noh, Y.J. Lee, J. Kim, Y.K. Kim, J. Ha, S.S. Kalanur, H. Seo, Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads. Chem. Eng. J. 428, 131095 (2022). https://doi.org/10.1016/j.cej.2021.131095

    Article  CAS  Google Scholar 

  8. S.S. Kalanur, R. Singh, H. Seo, Enhanced solar water splitting of an ideally doped and work function tuned 002 oriented one-dimensional WO3 with nanoscale surface charge mapping insights. Appl. Catal. B 295, 120269 (2021). https://doi.org/10.1016/j.apcatb.2021.120269

    Article  CAS  Google Scholar 

  9. S.S. Kalanur, Y.J. Lee, H. Seo, Exploring the synthesis, band edge insights, and photoelectrochemical water splitting properties of lead vanadates. ACS Appl. Mater. Interfaces 13, 25906–25917 (2021). https://doi.org/10.1021/acsami.1c03109

    Article  CAS  PubMed  Google Scholar 

  10. Y.-A. Lee, S.S. Kalanur, G. Shim, J. Park, H. Seo, Highly sensitive gasochromic H2 sensing by nano-columnar WO3-Pd films with surface moisture. Sens. Actuators B Chem. 238, 111–119 (2017). https://doi.org/10.1016/j.snb.2016.07.058

    Article  CAS  Google Scholar 

  11. L.T. Duy, G. Lee, J. Kim, B. Ahn, I.S. Cho, H.K. Yu, H. Seo, Improving p-to-n transition and detection range of bimodal hydrogen-sensitive nanohybrids of hole-doped rGO and chemochromic Pd-decorated-MoO3 nanoflakes. J. Alloy. Compd. 774, 111–121 (2019). https://doi.org/10.1016/j.jallcom.2018.09.351

    Article  CAS  Google Scholar 

  12. Q.A. Sial, R. Singh, L.T. Duy, S. Iqbal, I.-H. Yoo, S.S. Kalanur, H. Seo, Nitrogen-doped carbon dot anchored 1-D WO3 for enhanced solar water splitting: a nano surface imaging evidence of charge separation and accumulation. Int. J. Hydrog. Energy 46, 32546–32558 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.115

    Article  CAS  Google Scholar 

  13. S.-I. Han, S.Y. Lee, L.T. Duy, H. Seo, Reversible gasochromic hydrogen sensing of mixed-phase MoO3 with multi-layered Pt/Ni/Pt catalyst. Int. J. Hydrog. Energy 46, 33339–33348 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.091

    Article  CAS  Google Scholar 

  14. G. Shim, S.Y. Lee, S.S. Kalanur, H. Seo, Eye-readable gasochromic and electrical detectability of hydrogenated Pd–TiO2 to gaseous fluorine species. Appl. Surf. Sci. 462, 791–798 (2018). https://doi.org/10.1016/j.apsusc.2018.08.159

    Article  CAS  Google Scholar 

  15. S.Y. Lee, I.-H. Yoo, R. Singh, Y.J. Lee, S.S. Kalanur, H. Seo, Enhanced photocatalytic properties of band structure engineered Pd/TiO2 via sequential doping. Appl. Surf. Sci. 570, 151255 (2021). https://doi.org/10.1016/j.apsusc.2021.151255

    Article  CAS  Google Scholar 

  16. H.S. Yoon, J.H. Kim, H.J. Kim, H.N. Lee, H.C. Lee, H.S. Yoon, J.H. Kim, H.J. Kim, H.N. Lee, H.C. Lee, Preparation of gas sensors with nanostructured SnO2 thick films with different Pd doping concentrations by an ink dropping method. J. Korean Ceram. Soc. 54, 243–248 (2017). https://doi.org/10.4191/kcers.2017.54.3.10

    Article  Google Scholar 

  17. S.R. Gottam, C.-T. Tsai, L.-W. Wang, C.-T. Wang, C.-C. Lin, S.-Y. Chu, Highly sensitive hydrogen gas sensor based on a MoS2–Pt nanoparticle composite. Appl. Surf. Sci. 506, 144981 (2020). https://doi.org/10.1016/j.apsusc.2019.144981

    Article  CAS  Google Scholar 

  18. M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18, 3638 (2018). https://doi.org/10.3390/s18113638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Ryu, D.-H. Kim, J. Kwon, S.K. Park, W. Lee, H. Seo, K. Watanabe, T. Taniguchi, S. Kim, A.M. van der Zande, J. Son, G.-H. Lee, Fluorinated graphene contacts and passivation layer for MoS2 field effect transistors. Adv. Electron. Mater. 8, 2101370 (2022). https://doi.org/10.1002/aelm.202101370

    Article  CAS  Google Scholar 

  20. C.H. Park, W.-T. Koo, Y.J. Lee, Y.H. Kim, J. Lee, J.-S. Jang, H. Yun, I.-D. Kim, B.J. Kim, Hydrogen sensors based on MoS2 hollow architectures assembled by pickering emulsion. ACS Nano 14, 9652–9661 (2020). https://doi.org/10.1021/acsnano.0c00821

    Article  CAS  PubMed  Google Scholar 

  21. C. Kuru, C. Choi, A. Kargar, D. Choi, Y.J. Kim, C.H. Liu, S. Yavuz, S. Jin, MoS2 nanosheet–Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2, 1500004 (2015). https://doi.org/10.1002/advs.201500004

    Article  CAS  Google Scholar 

  22. L. Hao, Y. Liu, Y. Du, Z. Chen, Z. Han, Z. Xu, J. Zhu, Highly enhanced H2 sensing performance of few-layer MoS2/SiO2/Si heterojunctions by surface decoration of Pd nanoparticles. Nanoscale Res. Lett. 12, 567 (2017). https://doi.org/10.1186/s11671-017-2335-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Balamurugan, S.-J. Song, H.-S. Kim, C. Balamurugan, S.-J. Song, H.-S. Kim, Enhancing gas response characteristics of mixed metal oxide gas sensors. J. Korean Ceram. Soc. 55, 1–20 (2018). https://doi.org/10.4191/kcers.2018.55.1.10

    Article  CAS  Google Scholar 

  24. D.-H. Baek, J. Kim, MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuators B Chem. 250, 686–691 (2017). https://doi.org/10.1016/j.snb.2017.05.028

    Article  CAS  Google Scholar 

  25. J.-H. Park, J.-H. Lee, D.J. Kim, K.-T. Hwang, J.-H. Kim, K.-S. Han, J.-H. Park, J.-H. Lee, D.J. Kim, K.-T. Hwang, J.-H. Kim, K.-S. Han, Ink-Jet 3D printability of ceramic ink with contact angle control. J. Korean Ceram. Soc. 56, 461–467 (2019). https://doi.org/10.4191/kcers.2019.56.5.02

    Article  CAS  Google Scholar 

  26. J.-W.T. Seo, J. Zhu, V.K. Sangwan, E.B. Secor, S.G. Wallace, M.C. Hersam, Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors. ACS Appl. Mater. Interfaces 11, 5675–5681 (2019). https://doi.org/10.1021/acsami.8b19817

    Article  CAS  PubMed  Google Scholar 

  27. B. Li, X. Liang, G. Li, F. Shao, T. Xia, S. Xu, N. Hu, Y. Su, Z. Yang, Y. Zhang, Inkjet-printed ultrathin MoS2-based electrodes for flexible in-plane microsupercapacitors. ACS Appl. Mater. Interfaces 12, 39444–39454 (2020). https://doi.org/10.1021/acsami.0c11788

    Article  CAS  PubMed  Google Scholar 

  28. J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Func. Mater. 24, 6524–6531 (2014). https://doi.org/10.1002/adfm.201400984

    Article  CAS  Google Scholar 

  29. D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2, 925–932 (2014). https://doi.org/10.1039/C3TC31993H

    Article  CAS  Google Scholar 

  30. R.F. Hossain, A.B. Kaul, Inkjet-printed MoS2-based field-effect transistors with graphene and hexagonal boron nitride inks. J. Vac. Sci. Technol. B 38, 042206 (2020). https://doi.org/10.1116/6.0000082

    Article  CAS  Google Scholar 

  31. X.-F. Jin, C.-R.-L. Liu, L. Chen, Y. Zhang, X.-J. Zhang, Y.-M. Chen, J.-J. Chen, Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing. Sens. Actuators A 316, 112388 (2020). https://doi.org/10.1016/j.sna.2020.112388

    Article  CAS  Google Scholar 

  32. Y. Sui, C.A. Zorman, Review—inkjet printing of metal structures for electrochemical sensor applications. J. Electrochem. Soc. 167, 037571 (2020). https://doi.org/10.1149/1945-7111/ab721f

    Article  CAS  Google Scholar 

  33. J.M. Suh, Y.-S. Shim, K.C. Kwon, J.-M. Jeon, T.H. Lee, M. Shokouhimehr, H.W. Jang, Pd- and Au-decorated MoS2 gas sensors for enhanced selectivity. Electron. Mater. Lett. 15, 368–376 (2019). https://doi.org/10.1007/s13391-019-00128-9

    Article  CAS  Google Scholar 

  34. B.W. Jo, A. Lee, K.H. Ahn, S.J. Lee, Evaluation of jet performance in drop-on-demand (DOD) inkjet printing. Korean J. Chem. Eng. 26, 339–348 (2009). https://doi.org/10.1007/s11814-009-0057-2

    Article  CAS  Google Scholar 

  35. R.E. Saunders, J.E. Gough, B. Derby, Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29, 193–203 (2008). https://doi.org/10.1016/j.biomaterials.2007.09.032

    Article  CAS  PubMed  Google Scholar 

  36. D. Zhao, H. Zhou, Y. Wang, J. Yin, Y. Huang, Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink. Addit. Manuf. 48, 102451 (2021). https://doi.org/10.1016/j.addma.2021.102451

    Article  CAS  Google Scholar 

  37. L.T. Duy, Y.G. Noh, H. Seo, Improving graphene gas sensors via a synergistic effect of top nanocatalysts and bottom cellulose assembled using a modified filtration technique. Sens. Actuators B Chem. 334, 129676 (2021). https://doi.org/10.1016/j.snb.2021.129676

    Article  CAS  Google Scholar 

  38. Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, Z. Zhao, Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 8, 1993 (2017). https://doi.org/10.1038/s41467-017-02166-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A.M. Asiri, L. Chen, B. Tang, X. Sun, Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 8, 1801357 (2018). https://doi.org/10.1002/aenm.201801357

    Article  CAS  Google Scholar 

  40. L. Chacko, E. Massera, P.M. Aneesh, Enhancement in the selectivity and sensitivity of Ni and Pd functionalized MoS2 toxic gas sensors. J. Electrochem. Soc. 167, 106506 (2020). https://doi.org/10.1149/1945-7111/ab992c

    Article  CAS  Google Scholar 

  41. S.-I. Han, M. Kumar, L.T. Duy, R. Yeasmin, C. Park, G. Jung, H. Kim, A.S. Khan, H. Dang, H. Seo, Effect of structural changes of Pd/WO3 thin films on response direction and rate in hydrogen detection. Sens. Actuators B Chem. 404, 135259 (2024). https://doi.org/10.1016/j.snb.2023.135259

    Article  CAS  Google Scholar 

  42. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371

    Article  CAS  Google Scholar 

  43. J. Wei, M. Zhao, C. Wang, J. Wang, J.-M. Ye, Y.-C. Wei, Z.-Y. Li, R. Zhao, G.-Z. Liu, Y.-H. Geng, R. Wang, H.-D. Xiao, Y. Li, C.-Y. Li, Z.-Q. Gao, J. Gao, Vacuum based gas sensing material characterization system for precise and simultaneous measurement of optical and electrical responses. Sensors 22, 1014 (2022). https://doi.org/10.3390/s22031014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Pytlakowska, K. Kocot, M. Pilch, M. Zubko, Ultrasound-assisted dispersive micro-solid phase extraction using molybdenum disulfide supported on reduced graphene oxide for energy dispersive X-ray fluorescence spectrometric determination of chromium species in water. Microchim. Acta 187, 542 (2020). https://doi.org/10.1007/s00604-020-04476-4

    Article  CAS  Google Scholar 

  45. C. Zhang, Z. Wang, S. Bhoyate, T. Morey, B.L. Neria, V. Vasiraju, G. Gupta, S. Palchoudhury, P.K. Kahol, S.R. Mishra, F. Perez, R.K. Gupta, MoS2 decorated carbon nanofibers as efficient and durable electrocatalyst for hydrogen evolution reaction. C 3, 33 (2017). https://doi.org/10.3390/c3040033

    Article  CAS  Google Scholar 

  46. F.-X. Du, S.-L. Liu, Y. Li, J.-K. Wang, P. Zhang, Facile synthesis of MoS2/N-doped carbon as an anode for enhanced sodium-ion storage performance. Ionics 29, 5183–5193 (2023). https://doi.org/10.1007/s11581-023-05212-7

    Article  CAS  Google Scholar 

  47. Y. Mei, T.-T. Li, J. Qian, H. Li, M. Wu, Y.-Q. Zheng, Construction of a C@MoS2@C sandwiched heterostructure for accelerating the pH-universal hydrogen evolution reaction. Chem. Commun. 56, 13393–13396 (2020). https://doi.org/10.1039/D0CC06049F

    Article  CAS  Google Scholar 

  48. Z. Yuan, L. Wang, D. Li, J. Cao, W. Han, Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for Sodium-Ion batteries. ACS Nano 15, 7439–7450 (2021). https://doi.org/10.1021/acsnano.1c00849

    Article  CAS  PubMed  Google Scholar 

  49. S.Y. Jeong, S.-K. Park, Y.C. Kang, J.S. Cho, One-dimensional nanostructure comprising MoS2 nanosheets and carbon with uniformly defined nanovoids as an anode for high-performance sodium-ion batteries. Chem. Eng. J. 351, 559–568 (2018). https://doi.org/10.1016/j.cej.2018.06.130

    Article  CAS  Google Scholar 

  50. X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 26, 2344–2353 (2014). https://doi.org/10.1021/cm500347r

    Article  CAS  Google Scholar 

  51. F. Long, Y. Chen, C. Wu, J. Wang, S. Mo, Z. Zou, G. Zheng, Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries. Ionics 27, 1977–1986 (2021). https://doi.org/10.1007/s11581-021-03936-y

    Article  CAS  Google Scholar 

  52. Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li, X. Ou, X. Xiong, C. Yang, M. Liu, Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 12, 12578–12586 (2018). https://doi.org/10.1021/acsnano.8b07172

    Article  CAS  PubMed  Google Scholar 

  53. Y. Guo, J. Xie, L. Jia, Y. Shi, J. Zhang, Q. Chen, Q. Guan, Preparation of MoS2 nanosheets to support Pd species for selective steerable hydrogenation of acetylene. J. Mater. Sci. 56, 2129–2137 (2021). https://doi.org/10.1007/s10853-020-05349-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Energy Technology Evaluation and Planning (Project No: (20203030040030) by Ministry of Trade, Industry and Energy, Republic of Korea and by the Commercialization Promotion Agency for R&D Outcomes Planning (Project No: (RS-2023-00282104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungtak Seo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 801 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SI., Yeasmin, R., Duy, L.T. et al. Inkjet printing MoS2 nanosheets for hydrogen sensing applications. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00380-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00380-2

Keywords

Navigation