Skip to main content
Log in

Facile fabrication of manganese telluride and graphene oxide nanostructure for robust energy storage systems

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study presents hydrothermal synthesis of manganese telluride supported on graphene oxide (MnTe/GO) nanostructure, showcasing its exceptional potential as a material for supercapacitor applications. The thorough characterization of synthesized materials encompasses a variety of methodologies, notably X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer Emmet-Teller (BET) analysis, which collectively elucidate their structural, morphological, and textural attributes. Electrochemical assessments, employing established techniques such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and determination of electrochemical active surface area (ECSA), validate the exceptional performance of the synthesized materials. The nanocomposite MnTe/GO exhibits a heightened specific capacity (Csp) of 2203 F g−1 at a current density of 2 A g−1, demonstrating an impressive retention rate of 99% over 2000 cycles, thus highlighting its superior stability. These enhanced electrochemical capabilities are ascribed to the effective incorporation of MnTe into GO sheets, facilitating electron transfer and augmenting the active electrochemical surface area. Consequently, the electroactive nanocomposites, featuring metal telluride nanostructures, emerge as promising candidates for next-generation, high-performance supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.P.J.P. Holdren, Population and the energy problem. Popul. Environ.. Environ. 12, 231–255 (1991)

    Article  Google Scholar 

  2. K. Li, B. Lin, Impacts of urbanization and industrialization on energy consumption/CO2 emissions: does the level of development matter? Renew. Sustain. Energy Rev. 52, 1107–1122 (2015)

    Article  CAS  Google Scholar 

  3. B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, pp. 1–25 (2015)

  4. A. Akella, M. Sharma, R.P. Saini, S.E. Reviews, Optimum utilization of renewable energy sources in a remote area. Renew. Sustain. Energy Rev. 11, 894–908 (2007)

    Article  Google Scholar 

  5. L. Liu, S. Cheng, J. Li, Y.F. Huang, Mitigating environmental pollution and impacts from fossil fuels: the role of alternative fuels. Energy Sources Part A 29, 1069–1080 (2007)

    Article  Google Scholar 

  6. A. Kalair, N. Abas, M.S. Saleem, A.R. Kalair, N.S. Khan, Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 3, e135 (2021)

    Article  Google Scholar 

  7. H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—characteristics and comparisons. Renew. Sustain. Energy Rev. 12, 1221–1250 (2008)

    Article  CAS  Google Scholar 

  8. Y. Zhong, J. Zhang, G. Li, A. Liu, Research on energy efficiency of supercapacitor energy storage system, in 2006 International Conference on Power System Technology, pp. 1–4 (IEEE, 2006)

  9. K. Denshchikov, M. Izmaylova, A. Zhuk, Y. Vygodskii, V. Novikov, A.F. Gerasimov, 1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors. Electrochim. Acta. Acta 55, 7506–7510 (2010)

    Article  CAS  Google Scholar 

  10. P. Biesheuvel, Y. Fu, M.Z. Bazant, Diffuse charge and Faradaic reactions in porous electrodes. Phys. Rev. E 83, 061507 (2011)

    Article  ADS  CAS  Google Scholar 

  11. M.A. Rahman, X. Wang, C. Wen, High energy density metal-air batteries: a review. J. Electrochem. Soc.Electrochem. Soc. 160, A1759 (2013)

    Article  CAS  Google Scholar 

  12. C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020)

    Article  ADS  Google Scholar 

  13. X. Wang, Q. Wei, H. Li, J. Sun, H. Li, Y. He, Z. Liu, Iron-chalcogenide-based electrode materials for electrochemical energy storage. J. Mater. Chem. A 10, 7517–7556 (2022)

    Article  CAS  Google Scholar 

  14. Y.-W. Lee, B.-S. Kim, J. Hong, J. Lee, S. Pak, H.-S. Jang, D. Whang, S. Cha, J.I. Sohn, J.M. Kim, A pseudo-capacitive chalcogenide-based electrode with dense 1-dimensional nanoarrays for enhanced energy density in asymmetric supercapacitors. J. Mater. Chem. A 4, 10084–10090 (2016)

    Article  CAS  Google Scholar 

  15. A.R. Rashid, A.G. Abid, S. Manzoor, A. Mera, T.I. Al-Muhimeed, A.A. AlObaid, S.N. Shah, M.N. Ashiq, M. Imran, M. Najam-Ul-Haq, Inductive effect in Mn-doped ZnO nanoribon arrays grown on Ni foam: a promising key for boosted capacitive and high specific energy supercapacitors. Ceram. Int. 47, 28338–28347 (2021)

    Article  CAS  Google Scholar 

  16. R.S. Gohar, S. Manzoor, T. Munawar, S. Gouadria, M.F. Ashiq, F. Iqbal, F. Aftab, M. Najam-Ul-Haq, A. Trukhanov, M.N. Ashiq, Hydrothermal preparation of LaNdZr2O7–SnSe nanocomposite for electrochemical supercapacitor and degradation of contaminants’ applications. J. Energy Storage 52, 104930 (2022)

    Article  Google Scholar 

  17. M. Sadaqat, S. Manzoor, S. Aman, S. Gouadria, M. Usman, K.S. Joya, M. Najam-Ul-Haq, H.M.A. Hassan, M.N. Ashiq, T.A. Taha, Mn-based hierarchical polyhedral 2D/3D nanostructures MnX2 (X= S, Se, Te) derived from Mn-based metal-organic frameworks as high-performance electrocatalysts for the oxygen evolution reaction. Energy Fuels 36, 10327–10338 (2022)

    Article  CAS  Google Scholar 

  18. S. Manzoor, A.G. Abid, S. Aman, M. Abdullah, A.R. Rashid, H.M. Ali, T.E. Ali, M.A. Assiri, M.N. Ashiq, T.J. Taha, Facile synthesis of CoFePO4 on eggshell membrane for oxygen evolution reaction and supercapacitor applications. Ceram. Int. 48(24), 36975–36982 (2022)

    Article  CAS  Google Scholar 

  19. S. Saha, P. Samanta, N.C. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018)

    Article  Google Scholar 

  20. X. Zhou, E.E. Rodriguez, Tetrahedral transition metal chalcogenides as functional inorganic materials. Chem. Mater. 29, 5737–5752 (2017)

    Article  CAS  Google Scholar 

  21. H. Yuan, L. Kong, T. Li, Q. Zhang, A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chin. Chem. Lett. 28, 2180–2194 (2017)

    Article  CAS  Google Scholar 

  22. X.-Y. Peng, X.-X. Liu, D. Diamond, K.T. Lau, Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49, 3488–3496 (2011)

    Article  CAS  Google Scholar 

  23. L. Lv, B. Hui, X. Zhang, Y. Zou, D. Yang, Lamellar agarose/graphene oxide gel polymer electrolyte network for all-solid-state supercapacitor. Chem. Eng. J. 452, 139443 (2023)

    Article  CAS  Google Scholar 

  24. Q. Lei, H. Song, X. Chen, M. Li, A. Li, B. Tang, D. Zhou, Effects of graphene oxide addition on the synthesis and supercapacitor performance of carbon aerogel particles. RSV Adv. 6, 40683–40690 (2016)

    Article  CAS  Google Scholar 

  25. J. Chen, X. Wang, J. Wang, P.S. Lee, Sulfidation of NiMn-layered double hydroxides/graphene oxide composites toward supercapacitor electrodes with enhanced performance. Adv. Energy Mater. 6, 1501745 (2016)

    Article  Google Scholar 

  26. W. Li, Y. Shen, X. Xiao, C. An, G. Wei, Y. Wang, J. Wang, Y. Wu, C. An, Simple Te-thermal converting 2H to 1T@ 2H MoS2 homojunctions with enhanced supercapacitor performance. ACS Appl. Energy Mater. 2, 8337–8344 (2019)

    Article  CAS  Google Scholar 

  27. P. Bhol, S. Swain, A. Altaee, M. Saxena, A.K. Samal, Cobalt–iron decorated tellurium nanotubes for high energy density supercapacitor. Mater. Today Chem. 24, 100871 (2022)

    Article  CAS  Google Scholar 

  28. R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen, F. Wang, Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces 5, 9508–9516 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. L. Ma, L. Su, J. Zhang, D. Zhao, C. Qin, Z. Jin, K. Zhao, A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. J. Electroanal. Chem.Electroanal. Chem. 777, 75–84 (2016)

    Article  CAS  Google Scholar 

  30. S. Korkmaz, F.M. Tezel, İA. Kariper, Synthesis and characterization of GO/IrO2 thin film supercapacitor. J. Alloys Compd. 754, 14–25 (2018)

    Article  CAS  Google Scholar 

  31. A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin, Y. Tian, Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl. Surf. Sci. 282, 704–708 (2013)

    Article  ADS  CAS  Google Scholar 

  32. R.M. Obodo, A.C. Nwanya, M. Arshad, C. Iroegbu, I. Ahmad, R.U. Osuji, M. Maaza, F.I. Ezema, Conjugated NiO-ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material. Int. J. Energy Res. 44, 3192–3202 (2020)

    Article  CAS  Google Scholar 

  33. A.N. Naveen, S. Selladurai, Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications. Electrochim. Acta. Acta 125, 404–414 (2014)

    Article  CAS  Google Scholar 

  34. S. Rasul, A. Alazmi, K. Jaouen, M.N. Hedhili, P.M. Costa, Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes. Carbon 111, 774–781 (2017)

    Article  CAS  Google Scholar 

  35. F. Bidault, D. Brett, P. Middleton, N. Abson, N. Brandon, A new application for nickel foam in alkaline fuel cells. Int. J. Hydrogen Energy 34, 6799–6808 (2009)

    Article  CAS  Google Scholar 

  36. E.D. Minot, A.M. Janssens, I. Heller, H.A. Heering, C. Dekker, S.G. Lemay, Carbon nanotube biosensors: the critical role of the reference electrode. Appl. Phys. Lett. 91, 093507 (2007)

    Article  ADS  Google Scholar 

  37. M.N. Ur Rehman, T. Munawar, M.S. Nadeem, F. Mukhtar, A. Maqbool, M. Riaz, S. Manzoor, M.N. Ashiq, F. Iqbal, Facile synthesis and characterization of conducting polymer-metal oxide based core-shell PANI-Pr2O–NiO–Co3O4 nanocomposite: As electrode material for supercapacitor. Ceram. Int. 47, 18497–18509 (2021)

    Article  Google Scholar 

  38. P. Zhou, L. Fan, J. Wu, C. Gong, J. Zhang, Y. Tu, Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor. J. Alloys Compd. 685, 384–390 (2016)

    Article  CAS  Google Scholar 

  39. M. Maher, S. Hassan, K. Shoueir, B. Yousif, M. Abo-Elsoud, Activated carbon electrode with promising specific capacitance based on potassium bromide redox additive electrolyte for supercapacitor application. J. Mater. Res. Technol. 11, 1232–1244 (2021)

    Article  CAS  Google Scholar 

  40. A. Shokry, A. Elshaer, J. El Nady, S. Ebrahim, M. Khalil, High energy density and specific capacity for supercapacitor based on electrochemical synthesized polyindole. Electrochim. Acta. Acta 423, 140614 (2022)

    Article  CAS  Google Scholar 

  41. M. Mahmood, K. Chaudhary, M. Shahid, I. Shakir, P.O. Agboola, M. Aadil, Fabrication of MoO3 Nanowires/MXene@ CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications. Ceram. Int. 48, 19314–19323 (2022)

    Article  CAS  Google Scholar 

  42. A. Hanan, A.J. Laghari, M.Y. Solangi, U. Aftab, M.I. Abro, D. Cao, M. Ahmed, M.N. Lakhan, A. Ali, A. Asif, CdO/Co3O4 nanocomposite as an efficient electrocatalyst for oxygen evolution reaction in alkaline media. Int. J. Eng. Sci. Technol. 6, 1 (2022)

    Article  Google Scholar 

  43. M.Z. Iqbal, U. Aziz, Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices. J. Energy Storage 46, 103823 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Researchers Supporting Project (RSP2024R405), King Saud University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All have done equal contribution.

Corresponding author

Correspondence to Sumaira Manzoor.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.I.A., Saleem, A., Munawar, S. et al. Facile fabrication of manganese telluride and graphene oxide nanostructure for robust energy storage systems. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00371-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00371-3

Keywords

Navigation