Skip to main content

Advertisement

Log in

Direct synthesis of porous calcium-hexaluminate aggregate for refractory applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The synthesis of macro-porous calcium-hexaluminate (CaO∙6Al2O3, CA6) aggregates composed of CA6 platelets was examined using various Ca- and Al-precursors. The effects of annealing temperature, time, atmosphere, and AlF3 as a mineralizer on the formation of plate-shaped CA6 were also studied. The Ca:Al ratio was adjusted for full conversion to CA6, which is the most stable phase among the CaO-Al2O3 intermediate compounds. The conditions for the synthesis of plate-shaped CA6 aggregates with adequate strength were uncompromising, requiring heat treatment at ≥ 1500 °C for 15 h, which was also significantly affected by the type and size of the precursors. CA6 aggregate synthesized directly using coarse Al2O3 and CaO with 10 wt% CaO∙Al2O3 cement as a binder phase revealed the optimal macro-porous microstructure for castable refractory applications, showing porosity and compressive strength of 65% and 2.9 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available upon request.

References

  1. Z. Chen, W. Yan, S. Schafföner, S. Ma, Y. Dai, N. Li, Effect of SiC powder content on lightweight corundum-magnesium aluminate spinel castables. J. Alloys Compd. 764, 210–215 (2018). https://doi.org/10.1016/j.jallcom.2018.06.062

    Article  CAS  Google Scholar 

  2. B. Pacewska, M. Nowacka, Studies of conversion progress of calcium aluminate cement hydrates by thermal analysis method. J. Therm. Anal. Calorim. 117, 653–660 (2014). https://doi.org/10.1007/s10973-014-3804-5

    Article  CAS  Google Scholar 

  3. Y. Zhang, G. Ye, W. Gu, D. Ding, L. Chen, L. Zhu, Conversion of calcium aluminate cement hydrates at 60°C with and without water. J. Am. Ceram. Soc. 101, 2712–2717 (2018). https://doi.org/10.1111/jace.15505

    Article  CAS  Google Scholar 

  4. C. Domínguez, J. Chevalier, R. Torrecillas, L. Gremillard, G. Fantozzi, Thermomechanical properties and fracture mechanisms of calcium hexaluminate. J. Eur. Ceram. Soc. 21, 907–917 (2001). https://doi.org/10.1016/S0955-2219(00)00274-0

    Article  Google Scholar 

  5. A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, H. Kojima, Structure refinement of CaO·6Al2O3, J. Solid State Chem. 75, 197–200 (1988). https://doi.org/10.1016/0022-4596(88)90317-9

    Article  CAS  Google Scholar 

  6. R. Salomão, V.L. Ferreira, L.M.M. Costa, I.R. de Oliveira, Effects of the initial CaO-Al2O3 ratio on the microstructure development and mechanical properties of porous calcium hexaluminate. Ceram. Int. 44, 2626–2631 (2018). https://doi.org/10.1016/j.ceramint.2017.11.010

    Article  CAS  Google Scholar 

  7. S. Jonas, F. Nadachowski, D. Szwagierczak, A new non-silicate refractory of low thermal expansion. Ceram. Int. 24, 211–216 (1998). https://doi.org/10.1016/S0272-8842(97)00004-7

    Article  CAS  Google Scholar 

  8. A. Overhoff, A. Buhr, J. Grass, H.M. Wuthnow, New microporous materials for use in modern firing plants. Ceram. Forum Int. 82, 29–33 (2005)

    Google Scholar 

  9. D. Zacherl, M. Schnabel, A. Buhr, G. Büchel, R. Kockegey-Lorenz, J. Dutton, Advantages of calcium hexaluminate in a corrosive environment, Mater. Sci. Technol. Conf. Exhib. 2011, MST’11. 1, 87–94 (2011)

  10. S. Kumar, R. Sarkar, Alumina-Spinel castable for steel ladles: an overview. Int. J. Appl. Ceram. Technol. 20, 410–423 (2023). https://doi.org/10.1111/ijac.14213

    Article  CAS  Google Scholar 

  11. D. Holtstam, Iron in hibonite: a spectroscopic study. Phys. Chem. Miner. 23, 452–460 (1996). https://doi.org/10.1007/BF00202031

    Article  CAS  Google Scholar 

  12. J. Sakihama, R. Salamão, Microstructure development in porous calcium hexaluminate and application as a high-temperature thermal insulator: a critical review. InterCeram: Int. Ceram. Rev. 68, 58–65 (2019). https://doi.org/10.1007/s42411-019-0034-7

    Article  Google Scholar 

  13. L.P. Li, Y. Yan, X.Z. Fan, Z.H. Hu, C.Y. Zhao, Low-temperature synthesis of calcium-hexaluminate/magnesium-aluminum spinel composite ceramics. J. Eur. Ceram. Soc. 35, 2923–2931 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.03.041

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Li, B. Zhu, P. Chen, Microstructure evolution during the heating process and its effect on the elastic properties of CAC-bonded alumina castables. Ceram. Int. 42, 11355–11362 (2016). https://doi.org/10.1016/j.ceramint.2016.04.058

    Article  CAS  Google Scholar 

  15. C.Y. Lee, S. Lee, J.H. Ha, J. Lee, I.H. Song, K.S. Moon, Effect of the processing conditions of reticulated porous alumina on the compressive strength. J. Korean Ceram. Soc. 58, 495–506 (2021). https://doi.org/10.1007/s43207-021-00128-2

    Article  CAS  Google Scholar 

  16. S.I. Yun, S. Nahm, S.W. Park, Effects of the particle size composition of sintering additives on pore characteristics, flexural strength, and gas permeability of liquid-phase-bonded macroporous SiC. J. Korean Ceram. Soc. 58, 737–746 (2021). https://doi.org/10.1007/s43207-021-00148-y

    Article  CAS  Google Scholar 

  17. C. Zeng, Z. Huang, J. Huang, Y. Li, Y. Xu, S. Yi, M. Fang, Y.G. Liu, Preparation of calcium hexaluminate using Al2O3 and white beach sand from western Australia. Key Eng. Mater. 512–515, 940–944 (2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.940

    Article  CAS  Google Scholar 

  18. E.Y. Sako, M.A.L. Braulio, D.H. Milanez, P.O. Brant, V.C. Pandolfelli, Microsilica role in the CA6 formation in cement-bonded spinel refractory castables. J. Mater. Process. Technol. 209, 5552–5557 (2009). https://doi.org/10.1016/j.jmatprotec.2009.05.013

    Article  CAS  Google Scholar 

  19. L. An, H.M. Chan, K.K. Soni, Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites. J. Mater. Sci. 31, 3223–3229 (1996). https://doi.org/10.1007/BF00354672

    Article  CAS  Google Scholar 

  20. J. Khajornboon, K. Ota, K. Washijima, T. Shiono, Control of hexagonal plate-like microstructure of in-situ calcium hexaluminate in monolithic refractories. J. Asian Ceram. Soc. 6, 196–204 (2018). https://doi.org/10.1080/21870764.2018.1484621

    Article  Google Scholar 

  21. F. Wang, X. Li, P. Chen, G.M. Kale, B. Zhu, The adjustment of CA6 morphology and its effect on the thermo-mechanical properties of high temperature composites. J. Ceram. Soc. Japan. 126, 977–983 (2018). https://doi.org/10.2109/jcersj2.18143

    Article  CAS  Google Scholar 

  22. D.O. Obada, K.A. Salami, A.A. Alabi, A.N. Oyedeji, S. Csaki, T. Hulan, A.K. Meher, Mechanical behaviour of porous kaolin-based ceramics for potential catalysts support applications. J. Korean Ceram. Soc. 60, 99–112 (2023). https://doi.org/10.1007/s43207-022-00248-3

    Article  CAS  Google Scholar 

  23. J. Talaber, Actual views on high alumina cement. Period Polytech. Civ. Eng. 17, 113–119 (1973)

    Google Scholar 

  24. D. Garsel, High alumina cements and chemical binders, Refract. Technol. Introd. Updat. Inst. Refract. Eng. 1–15 (1996)

  25. H. Pöllmann, Calcium aluminate cements - raw materials, differences, hydration and properties. Rev. Mineral. Geochemistry. 74, 1–82 (2012). https://doi.org/10.2138/rmg.2012.74.1

    Article  CAS  Google Scholar 

  26. H.S. Kim, N.K. Park, T.J. Lee, M. Kang, Effect of AlF3 seed concentrations and calcination temperatures on the crystal growth of hexagonally shaped α-alumina powders. Ceram. Int. 40, 3813–3818 (2014). https://doi.org/10.1016/j.ceramint.2013.08.033

    Article  CAS  Google Scholar 

  27. H.S. Kim, M. Kang, Rapid crystal phase transformation into hexagonally shaped α-alumina using AlF3 seeds. J. Sol-Gel Sci. Technol. 68, 110–120 (2013). https://doi.org/10.1007/s10971-013-3142-2

    Article  CAS  Google Scholar 

  28. D. Riello, C. Zetterström, C. Parr, M.A.L. Braulio, M. Moreira, J.B. Gallo, V.C. Pandolfelli, AlF3 reaction mechanism and its influence on α-Al2O3 mineralization. Ceram. Int. 42, 9804–9814 (2016). https://doi.org/10.1016/j.ceramint.2016.03.074

    Article  CAS  Google Scholar 

  29. F. Simonin, C. Olagnon, S. Maximilien, G. Fantozzi, L.A. Diaz, R. Torrecillas, Thermomechanical behavior of high-alumina refractory castables with synthetic spinel additions. J. Am. Ceram. Soc. 90, 2481–2490 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01579.x

    Article  Google Scholar 

  30. C. Domínguez, J. Chevalier, R. Torrecillas, G. Fantozzi, Microstructure development in calcium hexaluminate. J. Eur. Ceram. Soc. 21, 381–387 (2001). https://doi.org/10.1016/S0955-2219(00)00143-6

    Article  Google Scholar 

  31. X. Liu, D. Yang, Z. Huang, J. Ye, S. Zhang, M. Fang, H. Ding, Y.G. Liu, In-situ synthesis of porous calcium hexa-aluminate ceramics and growth mechanism of the plate-like grains. Ceram. Int. 41, 14727–14732 (2015). https://doi.org/10.1016/j.ceramint.2015.07.197

    Article  CAS  Google Scholar 

  32. R. Salomão, V.L. Ferreira, I.R. de Oliveira, A.D.V. Souza, W.R. Correr, Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates. J. Eur. Ceram. Soc. 36, 4225–4235 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.026

    Article  CAS  Google Scholar 

  33. H. Guo, W. Li, Effects of Al2O3 crystal types on morphologies, formation mechanisms of mullite and properties of porous mullite ceramics based on kyanite. J. Eur. Ceram. Soc. 38, 679–686 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.09.003

    Article  CAS  Google Scholar 

  34. M.K. Cinibulk, Reaction between hot-pressed calcium hexaluminate and silicon carbide in the presence of oxygen. J. Am. Ceram. Soc. 81, 2789–2798 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02698.x

    Article  CAS  Google Scholar 

  35. D. Asmi, I.M. Low, S. Kennedy, R.A. Day, Characteristics of a layered and graded alumina/calcium-hexaluminate composite. Mater. Lett. 40, 96–102 (1999). https://doi.org/10.1016/S0167-577X(99)00055-5

    Article  CAS  Google Scholar 

  36. K. Kawaguchi, Y. Suzuki, T. Goto, S.H. Cho, T. Sekino, Homogeneously bulk porous calcium hexaaluminate (CaAl12O19): reactive sintering and microstructure development. Ceram. Int. 44, 4462–4466 (2018). https://doi.org/10.1016/j.ceramint.2017.11.138

    Article  CAS  Google Scholar 

  37. M.J. Kang, D.H. Yoon, Effects of impurities on the slip viscosity and sintered properties of low-soda easy-sintered α-alumina. J. Korean Ceram. Soc. 59, 595–603 (2022). https://doi.org/10.1007/s43207-022-00192-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Technology Innovation Program (20012911) funded by the Korean Ministry of Trade, Industry & Energy. The authors also thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) for technical support regarding the porosimetry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-Hyok Yoon.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, HM., Tsabit, A.M., Ryu, SS. et al. Direct synthesis of porous calcium-hexaluminate aggregate for refractory applications. J. Korean Ceram. Soc. 61, 104–114 (2024). https://doi.org/10.1007/s43207-023-00352-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00352-y

Keywords

Navigation