Skip to main content

Advertisement

Log in

Mechanical behaviour of porous kaolin-based ceramics for potential catalysts support applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, porous kaolin-based ceramic support materials were successfully fabricated using conventional sintering techniques. The support materials were prepared using two different weight per cent (wt.%) of sawdust addition (10–20 wt.%), compacted at 10–20 MPa and sintered at 900 and 1000 °C. The physical and mechanical properties of the support materials as formed by sintering were examined, while the failure rate of the fabricated support materials was determined using Weibull statistical tool. The experimental data show that the best result for the hardness and fracture toughness was obtained as 0.409 GPa and 0.835 MPa·m1/2 for supports sintered at 1000 °C with 20 wt. % pore formers. The mass loss for the support materials with the best properties was reported to be about 5%, making the support a potential material for use as catalyst support. The Weibull modulus (m) obtained for the ceramic support was in a range of 2.75–4.00, indicating that the samples had a lower failure rate than most ceramic support materials with a Weibull modulus of more than 6. The control samples and samples with the inclusion of pore formers demonstrated acoustic emission (AE) response during the entire cooling process during the acoustic emission test.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H.H.S. Villanueva, P.E.B. de Mello, Energy 88, 118–125 (2015)

    Article  Google Scholar 

  2. S. Danwittayakul, J. Dutta, J. Alloys Compd 586, 169–175 (2014)

    Article  CAS  Google Scholar 

  3. A. Dey, N. Kayal, O. Chakrabarti, R.F. Caldato, C.M. André, M.D. Innocentini, Ind. Eng. Chem. Res 52(51), 18362–18372 (2013)

    Article  CAS  Google Scholar 

  4. M. Fukushima, Y.I. Yoshizawa, J. Eur. Ceram. Soc 36(12), 2947–2953 (2016)

    Article  CAS  Google Scholar 

  5. Y. Feng, K. Wang, J. Yao, P.A. Webley, S. Smart, H. Wang, Ceram. Int. 39(7), 7551–7556 (2013)

    Article  CAS  Google Scholar 

  6. L. Nie, J. Liu, Y. Zhang, M. Liu, J. Power. Sources 196(23), 9975–9979 (2011)

    Article  CAS  Google Scholar 

  7. D.O. Obada, D. Dodoo-Arhin, M. Dauda, F.O. Anafi, A.S. Ahmed, O.A. Ajayi, O.J. Momoh, Appl. Clay Sci. 194, 105698 (2020)

    Article  CAS  Google Scholar 

  8. R.W. Rice, Porosity of Ceramics Marcel Dekker (CRC Press, New York, 1998). https://doi.org/10.1201/9781315274539

  9. M. Scheffler, P. Colombo (eds.), Cellular Ceramics: Structure, Manufacturing, Properties and Applications. (John Wiley & Sons, 2006)

  10. A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89(6), 1771–1789 (2006)

    Article  CAS  Google Scholar 

  11. B.A. Horri, C. Selomulya, H. Wang, Int. J. Hydrogen. Energy. 37(20), 15311–21539 (2012)

    Article  CAS  Google Scholar 

  12. T. Ohji, M. Fukushima, Int. Mater. Rev. 57(2), 115–131 (2012)

    Article  CAS  Google Scholar 

  13. V.R. Salvini, V.C. Pandolfelli, D. Spinelli, Recent Advances in Porous Ceramics (2018). https://doi.org/10.5772/intechopen.71612

  14. D.O. Obada, D. Dodoo-Arhin, M. Dauda, F.O. Anafi, A.S. Ahmed, O.A. Ajayi, Appl. Clay Sci. 150, 175–183 (2017)

    Article  CAS  Google Scholar 

  15. J. Zuo, T.S. Chung, G.S. O’Brien, W. Kosar, J. Membr. Sci. 523, 103–110 (2017)

    Article  CAS  Google Scholar 

  16. D.J. Green, Cambridge University Press. (1998).

  17. D.O. Obada, D. Dodoo-Arhin, M. Dauda, F.O. Anafi, A.S. Ahmed, O.A. Ajayi, Appl. Clay Sci. 132, 194–204 (2016)

    Article  Google Scholar 

  18. S. Bose, C. Das, Mater. Lett. 110, 152–155 (2013)

    Article  CAS  Google Scholar 

  19. E.S. Akpan, M. Dauda, L.S. Kuburi, D.O. Obada, N.D. Bansod, D. Dodoo-Arhin, Mater. Today Proceed. 38, 2291–2294 (2020)

    Article  Google Scholar 

  20. D.O. Obada, D. Dodoo-Arhin, M. Dauda, F.O. Anafi, A.S. Ahmed, O.A. Ajayi, Results. Phys. 7, 3838–3846 (2017)

    Article  Google Scholar 

  21. N.N. Nemeth, O.J. Jadaan, J.P. Gyekenyesi, Lifetime reliability prediction of ceramic structures under transient thermomechanical loads (No. E-14061) (2005), pp. 1–179

  22. O.M. Jadaan, N.N. Nemeth, J. Bagdahn, W.N. Sharpe, J. Mater. Sci. 38(20), 4087–4113 (2003)

    Article  CAS  Google Scholar 

  23. T. Wu, J. Su, Y. Li, H. Zhao, Y. Zhang, M. Zhang, B. Wu, Materials 11(10), 2054 (2018)

    Article  Google Scholar 

  24. P. O'Connor, A. Kleyner Practical reliability engineering. John Wiley and Sons. 2012

  25. J.B. Quinn, B. Janet, G.D. Quinn, Dental. Mater. 26(2), 135–147 (2010)

    Article  CAS  Google Scholar 

  26. B.A. Amlabu, S. Umaru, M. Dauda, D.O. Obada, S. Csaki, N.D. Bansod, O.O. Fasanya, SILICON 12, 1311–1324 (2020)

    Article  CAS  Google Scholar 

  27. Y. Sakata, Y. Tamaura, H. Imamura, M. Watanabe, Stud. Surf. Sci. Catal. 162, 331–338 (2006)

    Article  CAS  Google Scholar 

  28. Z. Zivcová, E.W.J. Gregorová, Pabst. Mater. Sci. 42, 8760–8764 (2007)

    Article  Google Scholar 

  29. Z. Zivcová, E.W. Gregorová, Pabst Appl. Ceram. 2, 1–8 (2008)

    Article  Google Scholar 

  30. Z. Zivcová, E.W. Gregorová, Pabst. Appl. Starch 61, 495–502 (2009)

    Article  Google Scholar 

  31. Z. Zivcová, E.W. Gregorová, Pabst. Appl. Starch 62, 3–10 (2010)

    Article  Google Scholar 

  32. Z. Zivcová, J. Locs, M. Keuper, I. Sedlárova, M. Chmelicková, J. Eur. Ceram. Soc. 32, 2163–2172 (2012)

    Article  Google Scholar 

  33. I.Y. Guzman, Glass. Ceram. 60, 280–283 (2003)

    Article  CAS  Google Scholar 

  34. Yu. Chen, N. Wang, O. Ola, Y. Xia, Y. Zhu, Mater. Sci. Eng. R. Rep. 143, 100589 (2021)

    Article  Google Scholar 

  35. E.F. Krivoshapkina, A.A. Vedyagin, P.V. Krivoshapkin, I.V. Desyatykh, Pet. Chem. 55, 901–908 (2015)

    Article  CAS  Google Scholar 

  36. E. Vanhaecke, S. Ivanova, A. Deneuve, O. Ersen, D. Edouard, G. Wine, P. Nguyen, C. Pham, C. Pham-Huu, J. Mater. Chem. 18, 4654 (2008)

    Article  CAS  Google Scholar 

  37. N.M.D. Vitorino, A.V. Kovalevsky, M.C. Ferro, J.C.C. Abrantes, J.R. Frade, Mater. Des. 117, 332–337 (2017)

    Article  CAS  Google Scholar 

  38. E.C. Hammel, O.R. Ighodaro, O.I. Okoli, Ceram. Int. 40(10), 15351–15370 (2014)

    Article  CAS  Google Scholar 

  39. J.K. Efavi, L. Damoah, D.Y. Bensah, D. Dodoo-Arhin, D. Tetteh, Appl. Clay. Sci. 65, 31–36 (2012)

    Article  Google Scholar 

  40. D.O. Obada, D. Dodoo-Arhin, M. Dauda, F.O. Anafi, A.S. Ahmed, O.A. Ajayi, I.A Samotu, World J. Eng. 13(4), 288–293 (2016)

    Article  CAS  Google Scholar 

  41. H. Hu, J.H. Xin, H. Hu, X. Wang, D. Miao, Y. Liu, J. Mater. Chem. A 3(21), 11157–11182 (2015)

    Article  CAS  Google Scholar 

  42. K.C. Taylor, Springer. Berlin. Heidelb. (1984). https://doi.org/10.1007/978-3-642-69486-8_9

    Article  Google Scholar 

  43. K.A. Salami, D.O. Obada, A.A. Alabi, S. Csaki, A.N. Oyedeji, J. Aust. Ceram. Soc. (2022). https://doi.org/10.1007/s41779-022-00778-3

    Article  Google Scholar 

  44. D.O. Obada, S.A. Osseni, H. Sina, K.A. Salami, A.N. Oyedeji, D. Dodoo-Arhin, E.T. Dauda, Appl. Clay. Sci. 215, 106298 (2021)

    Article  CAS  Google Scholar 

  45. O.A. Osuchukwu, A. Salihi, I. Abdullahi, D.O. Obada, Today. Proceed. Mater. (2022). https://doi.org/10.1016/j.matpr.2022.04.696

    Article  Google Scholar 

  46. O.A. Osuchukwu, A. Salihi, I. Abdullahi, D.O. Obada. Data. Brief 108305 (2022). https://doi.org/10.1016/j.dib.2022.108305

  47. D.O. Obada, K.A. Salami, A.N. Oyedeji, O.O. Fasanya, M.U. Suleiman, B.A. Ibisola, E.T. Dauda, Mater. Lett. 304, 130613 (2021)

    Article  CAS  Google Scholar 

  48. D.O. Obada, E.T. Dauda, J.K. Abifarin, D. Dodoo-Arhin, N.D. Bansod, Mater. Chem. Phys. 239, 122099 (2020)

    Article  CAS  Google Scholar 

  49. S. Bose, C. Das, Sawdust. Wood. Waste. Pore-Former. Fabricat. Ceram. Memb. Ceram. Int. 41(3), 4070–4079 (2015)

    CAS  Google Scholar 

  50. K.H. Choi, M. Shokouhimehr, Y.E. Sung, Bull. Korean. Chem. Soc. 34(5), 1477–1480 (2013)

    Article  CAS  Google Scholar 

  51. M. Shokouhimehr, J.H. Kim, Y.S. Lee, Synlett 4, 618–620 (2006)

    Google Scholar 

  52. Z. Bakhtiarzadeh, S. Rouhani, Z. Karimi, S. Rostamnia, T.A. Msagati, D. Kim, M. Shokouhimehr, Mol. Catal. 509, 111603 (2021)

    Article  CAS  Google Scholar 

  53. C. Duong-Viet, H. Ba, Z. El-Berrichi, J.M. Nhut, M.J. Ledoux, Y. Liu, C. Pham-Huu, New. J. Chem. 40(5), 4285–4299 (2016)

    Article  CAS  Google Scholar 

  54. E.M. Petersen, R.G. Rao, B.C. Vance, J.P. Tessonnier, Gyufykjlk. Appl. Catal. B: Env. 286, 119904 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Multifunctional Materials Laboratory, Shell Office in Mechanical Engineering, Department of Mechanical Engineering, and the Department of Metallurgical and Materials Engineering, both of Ahmadu Bello University, Zaria, Nigeria, for providing facilities to carry out this study. In addition, the authors acknowledge the support of the Research and Administrative Assistants, in addition to the Industrial Training Students (2021 cohort) at the Multifunctional Materials Laboratory under the TETFund Project (NRF_SETI_HSW_00714, 2020).

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

DO.O: conceptualization, methodology, data curation, writing- original draft, investigation, reviewing and editing, supervision; KA.S: conceptualization, methodology, data curation; writing- original draft; AA.A: data curation, supervision; AN.O: data curation, reviewing and editing. S.C; data curation, reviewing and editing; T.H: data curation; AK.M: reviewing and editing.

Corresponding author

Correspondence to David O. Obada.

Ethics declarations

Conflict of interests

The authors declare no competing interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Informed consent

Not applicable.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obada, D.O., Salami, K.A., Alabi, A.A. et al. Mechanical behaviour of porous kaolin-based ceramics for potential catalysts support applications. J. Korean Ceram. Soc. 60, 99–112 (2023). https://doi.org/10.1007/s43207-022-00248-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00248-3

Keywords

Navigation