Skip to main content

Advertisement

Log in

Low thermal conductivity and high durability porous thermal insulation coating via room–temperature spray coating process

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Herein, an efficient approach using aerosol deposition (AD) is proposed to fabricate a porous ceramic film with high thermal insulating and adhesive properties. Polyethylene powder (PE) is incorporated to regulate the kinetic energy of the ZrSiO4 powder, which hinders the formation of structurally stable film layers. During the high-energy milling process, the ZrSiO4-PE composite powder agglomerates suitably and exhibits adequate kinetic energy to produce a porous film. Despite its exceptional thermally insulating characteristics, the ZrSiO4-PE composite film demonstrates relatively poor adhesion properties. Consequently, an optimized quantity of Y2O3 powder is blended to modulate the thermal insulating and mechanical adhesion properties of the porous coating films. The Y2O3-(ZrSiO4-PE) composite film (approximately 60 μm) exhibits low density (2.2 g/cm3), low thermal conductivity (at ambient temperature, approximately 0.64 W/m∙K), and excellent adhesion strength (37 MPa) attributes. This research offers valuable guidance for fabricating composite porous ceramic films with low thermal conductivity and high adhesion at room temperatures using AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. Y. Chen, N. Wang, O. Ola, Y. Xia, Y. Zhu, Porous ceramics: light in weight but heavy in energy and environment technologies. Mater. Sci. Eng. R. Rep. 143, 100589 (2021)

    Article  Google Scholar 

  2. P. Boch, J.C. Niepce, Ceramic Materials: Processes, Properties, And Applications. Wiley. 98, 261–324 (2010)

    Google Scholar 

  3. L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014)

    Article  CAS  Google Scholar 

  4. X. Jiang, X. Zhu, X. Ai, H. Yang, Y. Cao, Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 25970–25975 (2017)

    Article  CAS  Google Scholar 

  5. C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020)

    Article  CAS  Google Scholar 

  6. S.-M. Park, S. Nahm, Y.-S. Oh, Thermal durability of ytterbium silicate environmental barrier coating prepared by suspension plasma spray. J. Korean Ceram. Soc. 58, 192–200 (2021)

    Article  CAS  Google Scholar 

  7. R. Malik, Y.W. Kim, Effect of nitride addition on the electrical and thermal properties of pressureless solid-state sintered SiC ceramics. J. Korean Ceram. Soc. 59(5), 589–594 (2022)

    Article  CAS  Google Scholar 

  8. M.R. Loghman Estarki, F. Abedi Vellashani, F. Moinifard, M. Milani, A. Kumar, M.R. Ghazi, M. Sardarian, Investigations of selected mechanical, wear properties and transparency of alumina obtained by combined PIM and SPS techniques. J. Korean Ceram. Soc. 59(6), 909–919 (2022)

    Article  CAS  Google Scholar 

  9. S. Salifu, P.A. Olubambi, Transparent aluminium ceramics: fabrication techniques, setbacks and prospects. J. Korean Ceram. Soc. 60(1), 24–40 (2023)

    Article  CAS  Google Scholar 

  10. R.A. Shishkin, Y.V. Yuferov, B.P. Karagergi, A.V. Schak, Microstructural and mechanical properties of pressureless sintered high-wear-resistant SiC composite materials. J. Korean Ceram. Soc. 60(1), 75–89 (2023)

    Article  CAS  Google Scholar 

  11. M.A. Kaiyum, A. Ahmed, M.H. Hasnat, S. Rahman, Effect of MgO on physical and mechanical properties of dental porcelain. J. Korean Ceram. Soc. 58, 42–49 (2021)

    Article  CAS  Google Scholar 

  12. S. Lee, J.H. Ha, J. Lee, I.H. Song, Enhanced mechanical strength of talc-containing porous kaolin prepared by a replica method. J. Korean Ceram. Soc. 58, 123–133 (2021)

    Article  Google Scholar 

  13. Y.X. Wang, S. Zhang, Toward hard yet tough ceramic coatings. Surf. Coat. Technol. 258, 1–16 (2014)

    Article  CAS  Google Scholar 

  14. S. Mehla, J. Das, D. Jampaiah, S. Periasamy, A. Nafady, S.K. Bhargava, Recent advances in preparation methods for catalytic thin films and coatings. Catal. Sci. Technol. 9, 3582–3602 (2019)

    Article  Google Scholar 

  15. H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018)

    Article  Google Scholar 

  16. S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, L.W. Martin, Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432–438 (2018)

    Article  CAS  Google Scholar 

  17. S.-Y. Hong, S. Nahm, Y.-S. Oh, Effect of heat treatment on the wear behavior of WC-Ni-Cr and WC-Ni-Cr+ Cr3C2 coatings fabricated by high-velocity oxy-fuel method. J. Korean Ceram. Soc. 59(4), 465–472 (2022)

    Article  CAS  Google Scholar 

  18. M. Park, A. Choi, S. Kim, W. Shim, Y. Kim, Study of SiO2 coating and carboxylic surface-modification on Mg-based inorganic fiber by one-step reflux reaction. J. Korean Ceram. Soc. 59(6), 869–875 (2022)

    Article  CAS  Google Scholar 

  19. Y. Wakisaka, M. Inayoshi, K. Fukui, H. Kosaka, Y. Hotta, A. Kawaguchi, N. Takada, Reduction of heat loss and improvement of thermal efficiency by application of “temperature swing” insulation to direct-injection diesel engines. SAE Int. J. Engines 9, 1449–1459 (2016)

    Article  Google Scholar 

  20. H. Kosaka, Y. Wakisaka, Y. Nomura, Y. Hotta, M. Koike, K. Nakakita, A. Kawaguchi, Concept of “temperature swing heat insulation” in combustion chamber walls, and appropriate thermo-physical properties for heat insulation coat. SAE Int. J. Engines 6, 142–149 (2013)

    Article  Google Scholar 

  21. A. Mehta, H. Vasudev, S. Singh, C. Prakash, K. Saxena, E. Linul, J. Xu, Processing and advancements in the development of thermal barrier coatings: a review. Coatings 12, 1318 (2022)

    Article  CAS  Google Scholar 

  22. R.A. Miller, Thermal barrier coatings for aircraft engines: history and directions, Therm. Spray. Technol. 6, 35–42 (1997)

    CAS  Google Scholar 

  23. B.S. Vasile, A.C. Birca, V.A. Surdu, I.A. Neacsu, A.I. Nicoară, Ceramic composite materials obtained by electron-beam physical vapor deposition used as thermal barriers in the aerospace industry. Nanomaterials 10, 370 (2020)

    Article  CAS  Google Scholar 

  24. M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 40, 353–366 (2002)

    Article  Google Scholar 

  25. R. Han, H. Liu, L. Zhao, J. Luo, J. Wang, X. Cui, T. Xiong, Development of high infrared emissivity porous ceramic coating using pre-synthesized flower-like CeO2 powder for high temperature applications. Ceram. Int. 48(1), 1340–1348 (2022)

    Article  CAS  Google Scholar 

  26. P. Lukes, M. Clupek, V. Babicky, P. Sunka, Pulsed electrical discharge in water generated using porous-ceramic-coated electrodes. IEEE Trans. Plasma Sci. 36, 1146–1147 (2008)

    Article  CAS  Google Scholar 

  27. K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater. Sci. 48(2), 57–170 (2003)

    Article  CAS  Google Scholar 

  28. L. Guo, X. Tao, Z. Gong, A. Guo, H. Du, J. Liu, Preparation of MoSi2-SiC-Al2O3-SiO2 coating on mullite fibrous insulation with silica sol as binder by non-firing process. Ceram. Int. 45, 2602–2611 (2019)

    Article  CAS  Google Scholar 

  29. A. Joseph, S. Mohan, C.S. Kumar, A. Mathew, S. Thomas, B.R. Vishnu, S.P. Sivapirakasam, An experimental investigation on pool boiling heat transfer enhancement using sol-gel derived nano-CuO porous coating. Exp. Therm. Fluid Sci. 103, 37–50 (2019)

    Article  CAS  Google Scholar 

  30. L. Łatka, L. Pawłowski, M. Winnicki, P. Sokołowski, A. Małachowska, S. Kozerski, Review of functionally graded thermal sprayed coatings. Appl. Sci. 10(15), 5153 (2020)

    Article  Google Scholar 

  31. J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J. Therm. Spray Technol. 17, 181–198 (2008)

    Article  CAS  Google Scholar 

  32. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, R. Moos, An overview of the aerosol deposition method: process fundamentals and new trends in materials application. J. Ceram. Sci. Technol. 6, 147–181 (2015)

    Google Scholar 

  33. Y.-H. Yun, J.-K. Lee, Wollastonite coating on zirconia substrate by room temperature spray processing. J. Korean Ceram. Soc. 59(3), 393–400 (2022)

    Article  CAS  Google Scholar 

  34. C. Lee, M.-Y. Cho, M. Kim, J. Jang, Y. Oh, K. Oh, S. Kim, B. Park, B. Kim, S.-M. Koo, J.-M.D. Oh Lee, Applicability of aerosol deposition process***** for flexible electronic device and determining the film formation mechanism with cushioning effects. Sci. Rep. 9, 2166 (2019)

    Article  Google Scholar 

  35. J.-J. Choi, J.-H. Choi, J. Ryu, B.-D. Hahn, J.-W. Kim, C.-W. Ahn, W.-H. Yoon, D.-S. Park, Microstructural evolution of YSZ electrolyte aerosol-deposited on porous NiO-YSZ. J. Eur. Ceram. Soc. 32, 3249–3254 (2012)

    Article  CAS  Google Scholar 

  36. I.-S. Kim, P.-J. Ko, M.-Y. Cho, Y.-S. Lee, H. Sohn, C. Park, W.H. Shin, S.-M. Koo, D.-W. Lee, J.-M. Oh, Fabrication of high-quality alumina coating through novel, dual-particle aerosol deposition. Ceram. Int. 46, 23686–23694 (2020)

    Article  CAS  Google Scholar 

  37. Y. Imanaka, N. Hayashi, M. Takenouchi, J. Akedo, Aerosol deposition for post-LTCC. J. Eur. Ceram. Soc. 27, 2789–2795 (2007)

    Article  CAS  Google Scholar 

  38. J. Akedo, Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J. Am. Ceram. Soc. 89, 1834–1839 (2006)

    Article  CAS  Google Scholar 

  39. K. Yuuki, Y. Sato, S. Yoshikado, Fabrication of nanoporous titanium dioxide films using aerosol deposition. Key Eng. Mater. 582, 141–144 (2013)

    Article  Google Scholar 

  40. J. Ryu, B.-D. Hahn, J.-J. Choi, W.-H. Yoon, B.-K. Lee, J.H. Choi, D.-S. Park, Porous photocatalytic TiO2 thin films by aerosol deposition. J. Am. Ceram. Soc. 93, 55–58 (2010)

    Article  CAS  Google Scholar 

  41. S.-J. Yun, J.-H. Kim, J. Jang, C.-W. Ahn, W.-H. Yoon, Y. Min, J.-J. Choi, B.-D. Hahn, B. D, Granule spray process***** for fabrication of adherent, low thermal conductivity ceramic coatings. Ceram. Int. 47(13), 17921–17929 (2021)

    Article  CAS  Google Scholar 

  42. S.-J. Yun, J.-H. Kim, J. Jang, H.-A. Cha, C.-W. Ahn, W.-H. Yoon, J.-J. Choi, B.-D. Hahn, Fabrication of highly porous and adhesive thick Y2O3 film by room-temperature spray process for thermal insulation coating. Ceram. Int. 49(10), 16216–16224 (2023)

    Article  CAS  Google Scholar 

  43. J. Exner, M. Schubert, D. Hanft, J. Kita, R. Moos, How to treat powders for the room temperature aerosol deposition method to avoid porous, low strength ceramic films. J. Eur. Ceram. Soc. 39, 592–600 (2019)

    Article  CAS  Google Scholar 

  44. H. Kwon, H. Park, C. Lee, Roles of particle size distribution in bimodal feedstocks on the deposition behavior and film properties in vacuum kinetic spraying. J. Therm. Spray technol. 27, 857–869 (2018)

    Article  CAS  Google Scholar 

  45. D.D. Kaombe, M. Lenes, K. Toven, W.R. Glomm, Turbiscan as a tool for studying the phase separation tendency of pyrolysis oil. Energy Fuels 27, 1446–1452 (2013)

    Article  CAS  Google Scholar 

  46. C. Celia, E. Trapasso, D. Cosco, D. Paolino, M. Fresta, Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf. B Biointerfaces 72(1), 155–160 (2009)

    Article  CAS  Google Scholar 

  47. X. Qi, H. Wang, C. Wang, F. Li, Application of Turbiscan in the homoaggregation and heteroaggregation of copper nanoparticles. Colloids Surf A Physicochem Eng Asp 535, 96–104 (2017)

    Article  CAS  Google Scholar 

  48. L. Delforce, E. Hofmann, V. Nardello-Rataj, J.M. Aubry, TiO2 nanoparticle dispersions in water and nonaqueous solvents studied by gravitational sedimentation analysis: complementarity of Hansen Parameters and DLVO interpretations. Colloids Surf A Physicochem Eng Asp 628, 127333 (2021)

    Article  CAS  Google Scholar 

  49. H. Eilers, Fabrication, Optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria. J. Eur. Ceram. Soc. 27, 4711–4717 (2007)

    Article  CAS  Google Scholar 

  50. P. Roy, G. Bertrand, C. Coddet, Spray drying and sintering of zirconia based hollow powders. Powder technol. 157(1–3), 20–26 (2005)

    Article  CAS  Google Scholar 

  51. D.S. Rickerby, A review of the methods for the measurement of coating substrate adhesion. Surf. Coat. Technol. 36, 541–557 (1988)

    Article  CAS  Google Scholar 

  52. S. Shaikh, L. Li, K. Lafdi, J. Huie, Thermal conductivity of an aligned carbon nanotube array. Carbon 13, 2608–2613 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (Development of 30 μm ceramic beads and reliability evaluation technology, No. 20011008) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Korea Institute of Materials Science (KIMS) internal R&D program (No. PNK8830).

Funding

Korea Evaluation Institute of Industrial Technology, 20011008, JongJin Choi, Korea Institute of Materials Science, PNK8830.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Jin Choi or Byung-Dong Hahn.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, SJ., Kim, JH., Cha, HA. et al. Low thermal conductivity and high durability porous thermal insulation coating via room–temperature spray coating process. J. Korean Ceram. Soc. 61, 142–152 (2024). https://doi.org/10.1007/s43207-023-00337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00337-x

Keywords

Navigation