Skip to main content
Log in

Cobalt-doped zinc glycolate as a precursor for the production of Zn1 − xCoxO oxide with nanostructured octahedral particles: synthesis, crystal structure, thermal, spectral, and optical properties

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this paper, the results of studying the formation conditions, crystal structure, thermal, spectral, and optical properties, as well as the electronic band structure of cobalt-doped zinc glycolate Zn1 − xCox(OCH2CH2O) (0˂x ≤ 0.2) are presented. Using X-ray powder diffraction data, it was shown that solid solutions are obtained by partial substitution of cobalt for zinc, while maintaining the crystal structure of Zn(OCH2CH2O). The vibrational spectra of Zn1 − xCox(OCH2CH2O) are identical to those of Zn(OCH2CH2O) and correlate completely with the results of structural analysis. As a result of heating in air at 600–900 °C, glycolate Zn1xCox(OCH2CH2O), where 0˂x ≤ 0.1, turns into oxide of the composition Zn1 − xCoxO with wurtzite structure, whose powders have a deep green color (Rinman’s green). The UV-Vis-NIR spectra of Zn1 − xCoxO contain bands typical of Co2+ ion transitions in the tetrahedral environment. When Zn1 − xCox(OCH2CH2O) is heated in helium atmosphere, composites (1-x)ZnO:xCo:nC are formed that include a phase with wurtzite structure, metallic cobalt, and elemental carbon. The electronic band structure, optical characteristics, and isosurfaces of wave functions of pure and cobalt-doped zinc glycolate and oxide were calculated. This allowed us to establish the reasons for the increase in the band gap width in glycolate compared to the oxide and its decrease during doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Kolodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: a review. Materials. 7, 2833–2881 (2014). https://doi.org/10.3390/ma7042833

    Article  CAS  Google Scholar 

  2. H. Moradpoor, M. Safaei, H.R. Mozaffari, R. Sharifi, M.M. Imani, A. Golshahe, N. Bashardoust, An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv. 11, 21189 (2021). https://doi.org/10.1039/D0RA10789A

    Article  CAS  Google Scholar 

  3. S. Deebansok, T. Amornsakchai, P. Sae-ear, P. Siriphannon, S.M. Smith, Sphere-like and flake-like ZnO immobilized on pineapple leaf fibers as easy-to-recover photocatalyst for the degradation of congo red. J Environ. Chem Eng. 9, 104746 (2021). https://doi.org/10.1016/j.jece.2020.104746

    Article  CAS  Google Scholar 

  4. Y. Xiong, M. Fang, Q. Zhang, W. Liu, X. Liu, L. Ma, X. Xu, Reproducible and arbitrary patterning of transparent ZnO nanorod arrays for optic and biomedical device integration. J. Alloys Comp. 898, 163003 (2022). https://doi.org/10.1016/j.jallcom.2021.163003

    Article  CAS  Google Scholar 

  5. D.K. Sharma, S. Shukla, K.K. Sharma, V. Kumar, A review on ZnO: Fundamental properties and applications. Mater. Today: Proc. 49, 3028–3035 (2022)

    CAS  Google Scholar 

  6. Y.Y. Kedruk, G.A. Baigarinova, L.V. Gritsenko, G. Cicero, K.A. Abdullin, Facile low-cost synthesis of highly photocatalitycally active zinc oxide powders. Front. Mater. 9, 869493 (2022). https://doi.org/10.3389/fmats.2022.869493

    Article  Google Scholar 

  7. E.K. Droepenu, B.S. Wee, S.F. Chin, K.Y. Kok, M.F. Maligan, Zinc oxide nanoparticles synthesis methods and its effect on morphology: a review. Biointerface Res. Appl. Chem. 12, 4261–4292 (2022). https://doi.org/10.33263/BRIAC123.42614292

    Article  CAS  Google Scholar 

  8. E. Alp, E.C. Araz, A.F. Buluc, Y. Güner, Y. Deger, H. Esgin, K.B. Dermenci, M.K. Kazmanli, S. Turan, A. Genc, Mesoporous nanocrystalline ZnO microspheres by ethylene glycol mediated thermal decomposition. Adv. Powder Technol. 29, 3455–3461 (2018). https://doi.org/10.1016/j.apt.2018.09.028

    Article  CAS  Google Scholar 

  9. A. Sinhamahapatra, D. Bhattacharjya, J.S. Yu, Green fabrication of 3-dimensional flower-shaped zinc glycerolate and ZnO microstructures for p-nitrophenol sensing. RSC Adv. 5, 37721 (2015). https://doi.org/10.1039/c5ra06286a

    Article  CAS  Google Scholar 

  10. S.M. Mousavi, G. Behbudi, A. Gholami, S.A. Hashemi, Z.M. Nejad, S. Bahrani, W.H. Chiang, L.C. Wei, N. Omidifar, Shape-controlled synthesis of zinc nanostructures mediating macromolecules for biomedical applications. Biomaterials Res. 26, 4 (2022). https://doi.org/10.1186/s40824-022-00252-y

    Article  CAS  Google Scholar 

  11. B. Patella, N. Moukri, G. Regalbuto, C. Cipollina, E. Pace, S. Di Vincenzo, G. Aiello, A. O’Riordan, Inguanta. Electrochemical synthesis of Zinc Oxide Nanostructures on flexible substrate and application as an Electrochemical Immunoglobulin-G Immunosensor. Materials. 15, 713 (2022). https://doi.org/10.3390/ma15030713

    Article  CAS  Google Scholar 

  12. H. Ma, P.L. Williams, S.A. Diamond, Ecotoxicity of manufactured ZnO nanoparticles - a review. Environ. Pollut. 172, 76–85 (2013). https://doi.org/10.1016/j.envpol.2012.08.011

    Article  CAS  Google Scholar 

  13. B. Poornaprakash, U. Chalapathi, K. Subramanyam, S.V.P. Vattikuti, S.H. Park, Wurtzite phase co-doped ZnO nanorods: morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceram. Intern. 46, 2931–2939 (2020). https://doi.org/10.1016/j.ceramint.2019.09.289

    Article  CAS  Google Scholar 

  14. X. Zhong, Y. Shen, S. Zhao, D. Wei, Y. Zhang, K. Wei, Hydrothermal growth of overlapping ZnO nanorod arrays on the porous substrate and their H2 gas sensing. Mater. Charact. 172, 110858 (2021). https://doi.org/10.1016/j.matchar.2020.110858

    Article  CAS  Google Scholar 

  15. S. Doke, K. Sonawane, A. Banerjee, S. Mahamuni, Evidence of various stabilizing mechanisms in ferromagnetic Co doped ZnO nanocrystals. J. Alloys Comp. 726, 947–954 (2017). https://doi.org/10.1016/j.jallcom.2017.08.034

    Article  CAS  Google Scholar 

  16. S.S. Ghosh, C. Choubey, A. Sil, Photocatalytic response of Fe, Co, Ni doped ZnO based diluted magnetic semiconductors for spintronics applications. Superlattices Microstruct. 125, 271–280 (2019). https://doi.org/10.1016/j.spmi.2018.10.028

    Article  CAS  Google Scholar 

  17. M.A. Fagier, Plant-Mediated biosynthesis and photocatalysis activities of zinc oxide nanoparticles: a prospect towards dyes mineralization. J. Nanotechnol. 11, 1 (2021). https://doi.org/10.1155/2021/6629180

    Article  CAS  Google Scholar 

  18. L.N. Wu, G.J. Zhang, S.T. Yang, J.X. Guo, S.Y. Wu, Theoretical examination of defect structures and spin hamiltonian parameters of manganese (II)- and cobalt (II)-doped ZnO nanowires. J. Phys. Chem. Solids. 165, 110657 (2022). https://doi.org/10.1016/j.jpcs.2022.110657

    Article  CAS  Google Scholar 

  19. A.E. Oksuz, M. Yurddaskal, U. Kartal, T. Dikici, M. Erol, ZnO nanostructures for photocatalytic degradation of methylene blue: effect of different anodization parameters. J. Korean Ceram. Soc. 59, 859–868 (2022). https://doi.org/10.1007/s43207-022-00222-z

    Article  CAS  Google Scholar 

  20. E. Ersöz, O.A. Yildirim, Green synthesis and characterization of Ag–doped ZnO nanofibers for photodegradation of MB, RhB and MO dye molecules. J. Korean Ceram. Soc. 59, 655–670 (2022). https://doi.org/10.1007/s43207-022-00202-3

    Article  CAS  Google Scholar 

  21. S.S. Kumari, W. Nirmala, N. Chidhambaram, M. Prabu, V. Ganesh, I.S. Yahia, Tuning the physical properties of Sb–doped ZnO nanopowders toward elevated photosensing and photocatalytic activity. J. Korean Ceram. Soc. 60, 719–731 (2023). https://doi.org/10.1007/s43207-023-00298-1

    Article  CAS  Google Scholar 

  22. S. Zhang, P. Yang, A. Zhang, R. Shi, Y. Zhu, Fabrication of hollow coupled-layered ZnO microstructures using zinc glycerolate precursors. Cryst. Eng. Comm. 15, 9090–9096 (2013). https://doi.org/10.1039/C3CE41218K

    Article  CAS  Google Scholar 

  23. M.A. Melkozerova, V.N. Krasil’nikov, O.I. Gyrdasova, E.V. Zabolotskaya, E.V. Shalaeva, R.F. Samigullina, Nature of defects in nanocrystalline zinc oxide with particles of tubular morphology. Theoret. Exp. Chem. 48, 149–152 (2012). https://doi.org/10.1007/s11237-012-9253-y

    Article  CAS  Google Scholar 

  24. V.N. Krasil’nikov, T.V. Dyachkova, A.P. Tyutyunnik, O.I. Gyrdasova, M.A. Melkozerova, I.V. Baklanova, Y.A. Perevozchikova, S.M. Emelyanova, H.W. Weber, V.V. Marchenkov, Magnetic and optical properties as well as EPR studies of polycrystalline ZnO synthesized from different precursors. Mater. Res. Bull. 97, 553–559 (2018). https://doi.org/10.1016/j.materresbull.2017.09.061

    Article  CAS  Google Scholar 

  25. V.N. Krasil’nikov, A.P. Tyutyunnik, V.P. Zhukov, I.V. Baklanova, O.I. Gyrdasova, E.V. Chulkov, Zinc glycolate zn(OCH2CH2O): synthesis and structure, spectral and optical properties, electronic structure and chemical bonding. J. Alloys Comp. 924, 166320 (2022). https://doi.org/10.1016/j.jallcom.2022.166320

    Article  CAS  Google Scholar 

  26. V.N. Krasil’nikov, O.I. Gyrdasova, L.Y. Buldakova, M.Y. Yanchenko, V.G. Bamburov, Synthesis and Photocatalytic Properties of highly dispersed Zinc Oxide Doped with Iron. Dokl. Chem. 437, 87–89 (2011). https://doi.org/10.1134/S0012500811040033

    Article  CAS  Google Scholar 

  27. V.N. Krasil’nikov, O.I. Gyrdasova, L.Y. Buldakova, M.Y. Yanchenko, Synthesis and Photocatalytic Properties of Low Dimensional Cobalt Doped Zinc Oxide with different crystal shapes. Russ J. Inorg. Chem. 56, 145–151 (2011). https://doi.org/10.1134/S0036023611020136

    Article  CAS  Google Scholar 

  28. M.A. Melkozerova, V.N. Krasil’nikov, O.I. Gyrdasova, E.V. Shalaeva, I.V. Baklanova, L.Y. Buldakova, M.Y. Yanchenko, Effect of doping with 3d elements (Co, Ni, Cu) on the intrinsic defect structure and Photocatalytic Properties of Nanostructured ZnO with tubular morphology of aggregates. Phys. Solid State. 55, 2459–2465 (2013). https://doi.org/10.1134/S106378341312024X

    Article  CAS  Google Scholar 

  29. V.N. Krasilnikov, T.V. Dyachkova, Ð.I. Gyrdasova, Ð.P. Tyutyunnik, V.V. Marchenkov, H.W. Weber, Room-temperature ferromagnetism in polycrystalline Zn1 – xFexO (0 ≤ x ≤ 0.075) solid solutions synthesized by the precursor method. Mater. Chem. Phys. 162, 1–5 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.025

    Article  CAS  Google Scholar 

  30. O.I. Gyrdasova, V.N. Krasil’nikov, I.V. Baklanova, L.Y. Buldakova, M.Y. Yanchenko, Synthesis, structure, and Optical and Photocatalytic Properties of Quasi-One-Dimensional ZnO Doped with Со3O4 and Carbon, Bull. Russ Acad. Sci. : Phys. 80, 1298–1302 (2016). https://doi.org/10.3103/S1062873816110204

    Article  CAS  Google Scholar 

  31. O.I. Gyrdasova, M.A. Melkozerova, I.V. Baklanova, L.Y. Buldakova, V.N. Krasil’nikov, M.Y. Yanchenko, N.S. Sycheva, V.G. Bamburov, Synthesis, structure, and Photocatalytic Properties of Zn1 – xCuxO:CuO composites with various morphologies of aggregates. Dokl. Chem. 474, 105–108 (2017). https://doi.org/10.1134/S0012500817050032

    Article  CAS  Google Scholar 

  32. O.I. Gyrdasova, N.S. Sycheva, I.V. Baklanova, L.Y. Buldakova, M.Y. Yanchenko ,·K, V. Nefedova, Krasil’nikov, Synthesis, structure, optical, voltammetric and photocatalytic properties of manganese–activated ZnO. J. Mater. Sci. : Materials in Electronics. 30, 8820–8831 (2019). https://doi.org/10.1007/s10854-019-01207-1

    Article  CAS  Google Scholar 

  33. Ð.I. Gyrdasova, E.V. Shalaeva, V.N. Krasil’nikov, L.Y. Buldakova, I.V. Baklanova, M.A. Melkozerova, Ð.V. Kuznetsov, Yanchenko, Effect of Cu+ ions on the structure, morphology, optical and photocatalytic properties of nanostructured ZnO. Mater. Charact. 179, 111384 (2021). https://doi.org/10.1016/j.matchar.2021.111384

    Article  CAS  Google Scholar 

  34. A. Mesaros, C.D. Ghitulica, M. Popa, R. Mereu, A. Popa, T.P. Jr. Gabor, A.I. Cadis, B.S. Vasile, Synthesis, structural and morphological characteristics, magnetic and optical properties of Co doped ZnO nanoparticles. Ceram. Intern. 40, 2835–2846 (2014). https://doi.org/10.1016/j.ceramint.2013.10.030

    Article  CAS  Google Scholar 

  35. J.J. Beltran, C.A. Barrero, A. Punnoose, Combination of defects plus mixed Valence of Transition Metals: a strong strategy for ferromagnetic enhancement in ZnO Nanoparticles. J. Phys. Chem. C 120, 8969–8978 (2016). https://doi.org/10.1021/acs.jpcc.6b00743

    Article  CAS  Google Scholar 

  36. K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, R. Gopal, Giant ferromagnetism in Li doped ZnO nanoparticles at room temperature. J. Alloys Comp. 823, 153710 (2020). https://doi.org/10.1016/j.jallcom.2020.153710

    Article  CAS  Google Scholar 

  37. J.M.P. Silva, N.F. Andrade Neto, M.C. Oliveira, R.A.P. Ribeiro, S.R. de Lazaro, Y.F. Gomes, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Recent progress and approaches on the synthesis of Mn-doped zinc oxide nanoparticles: a theoretical and experimental investigation on the photocatalytic performance. New. J. Chem. 44, 8805 (2020). https://doi.org/10.1039/d0nj01530j

    Article  CAS  Google Scholar 

  38. M. Carofiglio, S. Barui, V. Cauda, M. Laurenti, Doped Zinc Oxide Nanoparticles: synthesis, characterization and potential use in Nanomedicine. Appl. Sci. 10, 5194 (2020). https://doi.org/10.3390/app10155194

    Article  CAS  Google Scholar 

  39. O. Muktaridha, M. Adlim, S. Suhendrayatna, I. Ismail, Progress of 3d metal-doped zinc oxide nanoparticles and the photocatalytic properties. Arab. J Chem. 14, 103175 (2021). https://doi.org/10.1016/j.arabjc.2021.103175

    Article  CAS  Google Scholar 

  40. M.A. Wahba, S.M. Yakout, R. Khaled, Interface engineered efficient visible light photocatalytic activity of MWCNTs/Co doped ZnO nanocomposites: morphological, optical, electrical and magnetic properties. Opt. Mater. 115, 111039 (2021). https://doi.org/10.1016/j.optmat.2021.111039

    Article  CAS  Google Scholar 

  41. Z. Yuan, J. Li, F. Meng, High response n-propanol sensor based on co-modified ZnO nanorods. J. Alloys Comp. 910, 164971 (2022). https://doi.org/10.1016/j.jallcom.2022.164971

    Article  CAS  Google Scholar 

  42. D. Kumar, M. Kumar, S. Mohan, S. Mehata, Exploration of grown cobalt-doped zinc oxide nanoparticles and photodegradation of industrial dye. Mater. Res. Bull. 150, 111795 (2022). https://doi.org/10.1016/j.materesbull.2022.111795

    Article  CAS  Google Scholar 

  43. P.T.L. Huong, N.V. Quang, M.T. Tran, D.Q. Trung, D.T.B. Hop,·T, T.H. Tam, N. Tu, V.D. Dao, Excellent visible light photocatalytic degradation and mechanism insight of Co2+–doped ZnO nanoparticles. Appl. Phys. A 128, 24 (2022). https://doi.org/10.1007/s00339-021-05140-1

    Article  CAS  Google Scholar 

  44. A. Safeen, K. Safeen, M. Shafique, Y. Iqbal, N. Ahmed, M.A.R. Khan, G. Asghar, K. Althubeiti, S.A. Otaibi, G. Ali, W.H. Shah, R. Khan, The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC Adv. 12, 11923 (2022). https://doi.org/10.1039/d2ra01798a

    Article  CAS  Google Scholar 

  45. H.V.S. Pessoni, Magnetic properties in randomly diluted magnetic systems: co-doped ZnO polycrystalline ceramics. J. Alloys Comp. 923, 166264 (2022). https://doi.org/10.1016/j.jallcom.2022.166264. Jr.

    Article  CAS  Google Scholar 

  46. F.C. Romeiro, N.S. Castro, L. Scolfaro, P.D. Borges, R.C. Lima, Theoretical and experimental study of effects of Co2+ doping on structural and electronic properties of ZnO. J. Phys. Chem. Solids. 162, 110501 (2022). https://doi.org/10.1016/j.jpcs.2021.110501

    Article  CAS  Google Scholar 

  47. Y. Shen, J. Yang, Y. Zhang, T. Zeng, Q. Wan, Fabrication of a branch–like Ni–Doped ZnO/Graphene Nanoplatelet Composite for enhanced Electrochemical determination of 17β–Estradiol and Acetaminophen. J. Electron. Mater. 51, 5310–5321 (2022). https://doi.org/10.1007/s11664-022-09763-9

    Article  CAS  Google Scholar 

  48. H.V.S. Pessoni, P. Banerjeea, A. Franco Jr., Colossal dielectric permittivity in co-doped ZnO ceramics prepared by a pressure-less sintering method, cite this. Phys. Chem. Chem. Phys. 20, 28712 (2018). https://doi.org/10.1039/c8cp04215b

    Article  CAS  Google Scholar 

  49. M.A. Mahmood, R. Khan, S.A. Otaibi, K. Althubeiti, S.S. Abdullaev, N. Rahman, M. Sohail, S. Iqbal, The Effect of Transition Metals Co-Doped ZnO Nanotubes based-diluted magnetic Semiconductor for Spintronic Applications. Crystals. 13, 984 (2023). https://doi.org/10.3390/cryst13070984

    Article  CAS  Google Scholar 

  50. Q. Yue, L. Yan, J.Y. Zhang, E.Q. Gao, Novel Functionalized Metal-Organic Framework based on unique hexagonal prismatic clusters. Inorg. Chem. 49, 8647–8649 (2010). https://doi.org/10.1021/ic100558x

    Article  CAS  Google Scholar 

  51. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic Framew. Mater. as Chem. Sens. Chem Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t

    Article  CAS  Google Scholar 

  52. K.V. Lawler, Z. Hulveyz, P.M. Forster, Nanoporous metal formates for krypton/xenon separation. Chem. Commun. 49, 10959 (2013). https://doi.org/10.1039/c3cc44374d

    Article  CAS  Google Scholar 

  53. H. Li, L. Li, R.-B. Lin, W. Zhou, Z. Zhang, S. Xiang, B. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges. Energy Chem. 1, 100006 (2019). https://doi.org/10.1016/j.enchem.2019.100006

    Article  Google Scholar 

  54. B. Wu, Y.T.A. Wong, B.E.G. Lucier, P.D. Boyle, Y. Huang, Exploring host-guest interactions in the α–Zn3(HCOO)6 Metal-Organic Framework. ACS Omega. 4, 4000–4011 (2019). https://doi.org/10.1021/acsomega.8b03623

    Article  CAS  Google Scholar 

  55. R.B. Lin, S. Xiang, W. Zhou, B. Chen, Microporous Metal-Organic Framework materials for gas separation. Chem. 6, 337–363 (2020). https://doi.org/10.1016/j.chempr.2019.10.012

    Article  CAS  Google Scholar 

  56. H. Zhang, Y. Fan, R. Krishna, X. Feng, L. Wang, F. Luo, Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Sci. Bull. 66, 1073–1079 (2021). https://doi.org/10.1016/j.scib.2020.12.031

    Article  CAS  Google Scholar 

  57. R.D. Shannon, Revised effective ionic Radii and systematic studies of interatomie distances in Halides and Chaleogenides. Acta Cryst. A32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  58. N. Chakroune, G. Viau, S. Ammar, N. Jouini, P. Gredin, M.J. Vaulaya, F. Fievet, Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide: CoII(C2H4O2). New. J. Chem. 29, 355–361 (2005). https://doi.org/10.1039/B411117F

    Article  CAS  Google Scholar 

  59. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–2013 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  60. A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, New Mexico, 2004)

    Google Scholar 

  61. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  62. G. Kresse, M. Marsman, J. Furthmüller. Vienna ab-initio Simulationpackage. VASP the Guide (Universität Wien, Wien, 2018), p. 233

    Google Scholar 

  63. S.C. Abrahams, J.L. Bernstein, Remeasurement of the structure of Hexagonal ZnO. Acta Crystallogr. B 25, 1233–1236 (1969). https://doi.org/10.1107/S0567740869003876

    Article  CAS  Google Scholar 

  64. M. Mamak, P.Y. Zavalij, M.S. Whittingham, Layered structure of Lithium Ethylene Glycolate, Li(OCH2CH2OH). Acta Crystallogr. Sect. C 54, 937–939 (1998). https://doi.org/10.1107/S0108270198002121/da1011sup2.hkl

    Article  Google Scholar 

  65. R. Nesper, H.G. von Schnering, Zinn(II)-Ethylenglykolat, SnC2H4O2, ein polymerer Chelatkomplex mit 2-fach funktionellem Sauerstoff. Z. Naturforsch B: Chem. Sci. 37, 1144–1145 (1982). https://doi.org/10.1515/znb-1982-0910

    Article  Google Scholar 

  66. J. Teichert, M. Ruck, Influence of Common Anions on the Coordination of Metal Cations in Polyalcohols. Eur. J. Inorg. Chem. 2019, 2267–2276 (2019). https://doi.org/10.1002/ejic.201801540

    Article  CAS  Google Scholar 

  67. S.D. Birajdar, V.R. Bhagwat, A.B. Shinde, K.M. Jadhav, Effect of Co2+ ions on structural, morphological and optical properties of ZnO nanoparticles synthesized by sol-gel auto combustion method. Mater. Sci. Semicond. Proc. 41, 441–449 (2016). https://doi.org/10.1016/j.mssp.2015.10.002

    Article  CAS  Google Scholar 

  68. K.N. Hutchings, M. Wilson, P.A. Larsen, R.A. Cutler, Kinetic and thermodynamic considerations for oxygen absorption/desorption using cobalt oxide. Solid State Ionics. 177, 45–51 (2006). https://doi.org/10.1016/j.ssi.2005.10.005

    Article  CAS  Google Scholar 

  69. C.W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta. 473, 68–73 (2008). https://doi.org/10.1016/j.tca.2008.04.015

    Article  CAS  Google Scholar 

  70. P. Martin-Ramos, M. Susano, F.P.S.C. Gil, P.S. Pereira da Silva, J. Martin-Gil, M.R. Silva, Facile synthesis of three Kobolds: introducing students to the structure of pigments and their characterization. J. Chem. Educ. 95, 1340–1344 (2018). https://doi.org/10.1021/acs.jchemed.7b00402

    Article  CAS  Google Scholar 

  71. M. Scepanovic, M. Grujic-Brojcin, K. Vojisavljevic, S. Bernik, T. Sreckovic, Raman study of structural disorder in ZnO nanopowders. J. Raman Spectroscopy. 41, 914–921 (2010). https://doi.org/10.1002/jrs.2546

    Article  CAS  Google Scholar 

  72. B. Hadzic, N. Romcevic, M. Romcevic, I. Kuryliszyn-Kudelska, W. Dobrowolski, R. Wrobel, U. Narkiewicz, D. Sibera, Raman study of surface optical phonons in ZnO(mn) nanoparticles. J. Alloys Comp. 585, 214–219 (2014). https://doi.org/10.1016/j.jallcom.2013.09.132

    Article  CAS  Google Scholar 

  73. R.L. de Sousa, A.F Jr. Silva, Raman spectroscopy study of structural disorder degree of ZnO ceramics. Mater. Sci. Semicond. Proc. 119(2020)

    Article  CAS  Google Scholar 

  74. M. Fang, Z.W. Liu, Structure and properties variations in Zn1 – xCoxO nanorods prepared by microwave-assisted hydrothermal method. Mater. Sci. Semicond. Proc. 57, 233–238 (2017). https://doi.org/10.1016/j.mssp.2016.10.041

    Article  CAS  Google Scholar 

  75. S.B. Yahia, L. Znaidi, A. Kanaev, J.P. Petitet, Raman study of oriented ZnO thin films deposited by sol-gel method. Spectrochim. Acta Part A 71, 1234–1238 (2008). https://doi.org/10.1016/j.saa.2008.03.032

    Article  CAS  Google Scholar 

  76. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Effect of Cobalt Doping on Structural, Optical, and magnetic Properties of ZnO Nanoparticles synthesized by Coprecipitation Method. J. Phys. Chem. C 118, 9715–9725 (2014). https://doi.org/10.1021/jp411848t

    Article  CAS  Google Scholar 

  77. K.S. Al-Namshah, M. Shkir, F.A. Ibrahim, M.S. Hamdy, Auto combustion synthesis and characterization of Co doped ZnO nanoparticles with boosted photocatalytic performance. Phys. B: Condens. Matter. 625, 413459 (2022). https://doi.org/10.1016/j.physb.2021.413459

    Article  CAS  Google Scholar 

  78. R. Bhargava, P.K. Sharma, R.K. Dutta, S. Kumar, A.C. Pandey, N. Kumar, Influence of co-doping on the thermal, structural, and optical properties of sol-gel derived ZnO nanoparticles. Mater. Chem. Phys. 120, 393–398 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.024

    Article  CAS  Google Scholar 

  79. B. Hadzic, N. Romcevic, M. Romcevic, I. Kuryliszyn-Kudelska, W. Dobrowolski, J. Trajic, D. Timotijevic, U. Narkiewicz, D. Sibera, Surface optical phonons in ZnO(Co) nanoparticles: Raman study. J. Alloys Comp. 540, 49–56 (2012). https://doi.org/10.1016/j.jallcom.2012.06.076

    Article  CAS  Google Scholar 

  80. V. Ney, S. Ye, T. Kammermeier, A. Ney, H. Zhou, J. Fallert, H. Kalt, F.Y. Lo, A. Melnikov, A.D. Wieck, Structural, magnetic, and optical properties of Co- and Gd-implanted ZnO (0001) substrates. J. Appl. Phys. 104, 083904 (2008). https://doi.org/10.1063/1.3000452

    Article  CAS  Google Scholar 

  81. O.F. Kolomys, V.V. Strelchuk, S.V. Rarata, R. Hayn, A. Savoyant, F. Giovannelli, F. Delorme, V. Tkach, Optical and structural properties of individual co-doped ZnO microwires. Superlattices Microstruct. 118, 7–15 (2018). https://doi.org/10.1016/j.spmi.2018.04.005

    Article  CAS  Google Scholar 

  82. P.R. Chithira, T.T. John, Correlation among oxygen vacancy and doping concentration in controlling the properties of cobalt doped ZnO nanoparticles. J. Magn. Magn. Mater. 496, 165928 (2020). https://doi.org/10.1016/j.jmmm.2019.165928

    Article  CAS  Google Scholar 

  83. J.S. Kumar, K. Pavani, A.M. Babu, N.K. Giri, S.B. Rai, L.R. Moorthy, Fluorescence characteristics of Dy3+ ions in calcium fluoroborate glasses. J. Luminescence. 130, 1916–1923 (2010). https://doi.org/10.1016/j.jlumin.2010.05.006

    Article  CAS  Google Scholar 

  84. A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Green, yellow and orange defect emission from ZnO nanostructures: influence of excitation wavelength. Appl. Phys. Lett. 88, 103107 (2006). https://doi.org/10.1063/1.2182096

    Article  CAS  Google Scholar 

  85. A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, Defect emissions in ZnO nanostructures. Nanotechnology. 18, 095702 (2007). https://doi.org/10.1088/0957-4484/18/9/095702

    Article  CAS  Google Scholar 

  86. H. Ji, C. Cai, S. Zhou, W. Liu, Structure, photoluminescence, and magnetic properties of co-doped ZnO nanoparticles. J. Mater. Sci. : Materials in Electronics. 29, 12917–12926 (2018). https://doi.org/10.1007/s10854-018-9411-7.S

    Article  CAS  Google Scholar 

  87. J. Kammoun, El ghoul, Structural and optical investigation of co-doped ZnO nanoparticles for nanooptoelectronic devices. J. Mater. Sci. : Materials in Electronics. 32, 7215–7225 (2021). https://doi.org/10.1007/s10854-021-05430-7

    Article  CAS  Google Scholar 

  88. N. Pushpa, M.K. Kokila, Effect of Cobalt doping on structural, thermo and photoluminescent properties of ZnO nanopowders. J. Luminescence. 190, 100–107 (2017). https://doi.org/10.1016/j.jlumin.2017.05.032

    Article  CAS  Google Scholar 

  89. J. Kazmi, P.C. Ooi, S.R.A. Raza, B.T. Goh, S.S.A. Karim, M.H. Samat, M.K. Lee, M.F.M.R. Wee, M.F.M. Taibd, M.A. Mohamed, Appealing stable room-temperature ferromagnetism by well-aligned 1D co-doped zinc oxide nanowires. J. Alloys Comp. 872, 159741 (2021). https://doi.org/10.1016/j.jallcom.2021.159741

    Article  CAS  Google Scholar 

  90. P. Koidl, Optical absorption of Co2+ in ZnO. Phys. Rev. B 15, 2493–2499 (1977). https://doi.org/10.1103/PhysRevB.15.2493

    Article  CAS  Google Scholar 

  91. L. Reinert, M. Zeiger, S. Suarez, V. Presser, F. Mucklich, Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv. 5, 95149–95159 (2015). https://doi.org/10.1039/C5RA14310A

    Article  CAS  Google Scholar 

  92. Y.L. Fu, J.L. Ren, Z.W. Xu, S.W. Ng, Cobalt(II) formate hydroxide. Acta Cryst. E61, m2395–m2396 (2005). https://doi.org/10.1107/S1600536805033817

    Article  CAS  Google Scholar 

  93. H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218–4244 (2012). https://doi.org/10.1039/c2cs15359a

    Article  CAS  Google Scholar 

  94. P. Sulcova, M. Trojan, New green pigments: ZnO-CoO. Dyes Pigm. 4, 83–86 (1998). https://doi.org/10.1016/S0143-7208(98)00036-9

    Article  Google Scholar 

  95. N. Zhou, Y. Zhang, S. Nian, W. Li, J. Li, W. Cao, Z. Wu, Synthesis and characterization of Zn1 – xCoxO green pigments with low content cobalt oxide. J. Alloys Comp. 711, 406–413 (2017). https://doi.org/10.1016/j.jallcom.2017.04.015

    Article  CAS  Google Scholar 

  96. I. Mjejri, S. Mornet, M. Gaudon, From nano-structured polycrystalline spheres with Zn1 – xCoxO composition to core-shell Zn1 – xCoxO@SiO2 as green pigments. J. Alloys Comp. 777, 1204–1210 (2019). https://doi.org/10.1016/j.jallcom.2018.10.333

    Article  CAS  Google Scholar 

  97. N. Zhou, S. Sha, Y. Zhang, S. Li, S. Xu, J. Luan, Coprecipitation synthesis of a green co-doped wurtzite structure high near-infrared reflective pigments using ammonia as precipitant. J. Alloys Comp. 820, 153183 (2020). https://doi.org/10.1016/j.jallcom.2019.153183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The X-ray study was carried out at the Multiple-Access Center for X-ray Structure Analysis at the Institute of Solid State Chemistry, UB RAS. The UV-Vis spectra were recorded using the equipment of the Multiple-Access Center for Spectroscopy and Analysis of Organic Compounds at the Postovsky Institute of Organic Synthesis, UB RAS. This work was carried out in accordance with the scientific and research plans and as defined in the state assignment for the Institute of Solid State Chemistry, UB RAS (grant No. AAAA-A19–119031890025-9). The electronic structure calculations were performed with the URAN cluster in the Institute of Mathematics and Mechanics, UB RAS. E.V.C. acknowledges support from Saint Petersburg State University (grant No. ID 94031444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Baklanova.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 484.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasil’nikov, V.N., Tyutyunnik, A.P., Baklanova, I.V. et al. Cobalt-doped zinc glycolate as a precursor for the production of Zn1 − xCoxO oxide with nanostructured octahedral particles: synthesis, crystal structure, thermal, spectral, and optical properties. J. Korean Ceram. Soc. 60, 990–1009 (2023). https://doi.org/10.1007/s43207-023-00323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00323-3

Keywords

Navigation