Skip to main content

Advertisement

Log in

Functional materials for modifying interfaces between solid electrolytes and lithium electrodes of all-solid-state lithium metal batteries

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

All-solid-state lithium metal batteries have attracted considerable attention as the next-generation energy storage devices with high energy density and safety. This review focuses on the properties of interfaces between solid electrolytes and lithium electrodes, which are important for realizing all-solid-state lithium metal batteries. Various functional materials were used for modifying such interfaces, including amorphous oxide solid electrolytes, LiF, Al2O3, and carbon-based materials. After reviewing literature works related to this topic, we concluded that optimizing the combinations of the various functional materials should be studied more actively. In addition, along with performance optimization of functional materials, the development of mass-production processes should be carried out in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright 2017 Elsevier B.V. All rights reserved. c Schematic of the Li dendrite inhibition mechanism in the Li3OCl–LLZTO composite electrolyte. SEM images of the d LLZTO pellet and e Li3OCl–LLZTO composite pellet. f Cycle evaluation data obtained for the symmetric cells. Reprinted with permission from Ref. [42]. Copyright 2018 Elsevier B.V. All rights reserved

Fig. 5

Copyright 2019 Tsinghua University Press and Springer-Verlag GmbH Germany. All rights reserved. c Galvanostatic cycling and electrochemical impedance spectra of the symmetric Li–LLZO cells. d Schematics and SEM images showing the interface state after cycling according to the thickness of the LiPON protective film. Reprinted with permission from Ref. [44]. Copyright 2021 Wiley–VCH GmbH. All rights reserved

Fig. 6

Copyright 2022 Elsevier B.V. All rights reserved

Fig. 7

Copyright 2022 The Authors, some rights reserved; exclusive licensee: American Association for the Advancement of Science

Fig. 8

Copyright 2020 Elsevier Ltd. All rights reserved

Fig. 9
Fig. 10

Copyright 2021 The Authors. All rights reserved

Fig. 11

Copyright 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. e Cycling behavior of the bare LATP/Li and Al2O3 coated LATP/Li symmetric cells. f TEM cross-sectional images of the bare and Al2O3 coated LATP pellets. Reprinted with permission from Ref. [51]. Copyright 2018 American Chemical Society. All rights reserved

Fig. 12

Copyright 2018 American Chemical Society. All rights reserved. c Mechanism of the graphite reaction with lithium. d SEM image of the interface between lithium and LLZTO. e Nyquist plots of the symmetric cells containing bare LLZTO and iGr@LLZTO. f Cycling performance of the Li│iGr@LLZTO│LiFePO4 full cell. Reprinted with permission from Ref. [54]. Copyright 2022 Elsevier B.V. All rights reserved

Fig. 13

Copyright 2021 The Authors, some rights reserved; exclusive licensee: American Association for the Advancement of Science

Similar content being viewed by others

Data availability

Data sharing not applicable—no new data generated.

References

  1. L. Liang, X. Sun, J. Zhang, J. Sun, L. Hou, Y. Liu, C. Yuan, Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. Mater. Horiz. 6, 871–910 (2019). https://doi.org/10.1039/c8mh01593g

    Article  CAS  Google Scholar 

  2. L. Bai, W. Xue, Y. Li, X. Liu, Y. Li, J. Sun, The interfacial behaviours of all-solid-state lithium ion batteries. Ceram. Int. 44, 7319–7328 (2018). https://doi.org/10.1016/j.ceramint.2018.01.190

    Article  CAS  Google Scholar 

  3. H.S. Lim, L. Liu, H.J. Lee, J.M. Cha, D.K. Yoon, B.K. Ryu, The study on the interface characteristics of solid-state electrolyte. J. Korean Ceram. Soc. 58, 373–377 (2021). https://doi.org/10.1007/s43207-021-00110-y

    Article  CAS  Google Scholar 

  4. I.Y. Kim, J. Ko, T.Y. Ahn, H.W. Cheong, Y.S. Yoon, Energy materials for energy conversion and storage: focus on research conducted in Korea. J. Korean Ceram. Soc. 58, 645–661 (2021). https://doi.org/10.1007/s43207-021-00152-2

    Article  CAS  Google Scholar 

  5. J. Seo, H.W. Kim, J.H. Yu, H.J. Park, Electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O.3 and BaZr0.65Ce0.20Y0.15O3 composite cathodes on Y-doped barium-cerium-zirconium oxide solid electrolyte. J. Korean Ceram. Soc. 59, 217–223 (2022). https://doi.org/10.1007/s43207-021-00169-7

    Article  CAS  Google Scholar 

  6. A. Tron, A. Nosenko, J. Mun, Thermal stability of active electrode material in contact with solid electrolyte. J. Korean Ceram. Soc. 59, 193–201 (2022). https://doi.org/10.1007/s43207-021-00164-y

    Article  CAS  Google Scholar 

  7. F. Han, T. Gao, Y. Zhu, K.J. Gaskell, C. Wang, A battery made from a single material. Adv. Mater. 27, 1–11 (2015). https://doi.org/10.1002/adma.201500180

    Article  CAS  Google Scholar 

  8. P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm, J. Janek, Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C. 117, 21064–21074 (2013). https://doi.org/10.1021/jp4051275

    Article  CAS  Google Scholar 

  9. S. Wenzel, S. Randau, T. Leichtwei, D.A. Weber, J. Sann, W.G. Zeier, J. Janek, Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016)

    Article  CAS  Google Scholar 

  10. F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016). https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  11. Y. Mo, S.P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y

    Article  CAS  Google Scholar 

  12. S. Wenzel, T. Leichtweiss, D. Kruger, J. Sann, J. Janek, Interphase formation on lithium solid electrolytes- An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015). https://doi.org/10.1016/j.ssi.2015.06.001

    Article  CAS  Google Scholar 

  13. S. Stramare, V. Thangadural, W. Weppner, Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003). https://doi.org/10.1021/cm0300516

    Article  CAS  Google Scholar 

  14. Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first- principles calculations. ACS Appl. Mater. Interfaces. 7, 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517

    Article  CAS  Google Scholar 

  15. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017). https://doi.org/10.1126/sciadv.1601659

    Article  CAS  Google Scholar 

  16. C.H. Jung, H. Shlm, D. Eum, S.H. Hong, Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries. J. Korean Ceram. Soc. 58, 1–27 (2021). https://doi.org/10.1007/s43207-020-00098-x

    Article  CAS  Google Scholar 

  17. Z. Meng, T.W. Kim, S.M. Lee, K.S. Lee, Crack healing in the SiC–SiC ceramic matrix composites fabricated with different process. J. Korean Ceram. Soc. 58, 86–93 (2021). https://doi.org/10.1007/s43207-020-00074-5

    Article  CAS  Google Scholar 

  18. R. Malik, Y.W. Kim, Effect of nitride addition on the electrical and thermal properties of pressureless solid-state sintered SiC ceramics. J. Korean Ceram. Soc. 59, 589–594 (2022). https://doi.org/10.1007/s43207-022-00190-4

    Article  CAS  Google Scholar 

  19. H. Jeong, B. Sharma, S. Jo, Y.H. Kim, J. Myung, Electrochemical characteristics of La08Sr02MnO3(LSM)-scandia-stabilized zirconia (ScSZ) composite cathode. J. Korean Ceram. Soc. 59, 473–479 (2022). https://doi.org/10.1007/s43207-022-00200-5

    Article  CAS  Google Scholar 

  20. J.Y. Park, D. Kim, H.G. Lee, W.J. Kim, Fabrication and evaluation of C-ring strength of SiCf/SiC composite tube. J. Korean Ceram. Soc. 58, 718–727 (2021). https://doi.org/10.1007/s43207-021-00146-0

    Article  CAS  Google Scholar 

  21. S. Abbas, Z.M. Elqahtanl, G. Yasmeen, S. Manzoor, S. Manzoor, M.S.A. Burlahl, Z.A. Alrowall, M.N. Ashlq, Facile synthesis of rGO/PANI/ZnO ternary nanocomposites for energy storage devices. J. Korean Ceram. Soc. 60, 127–140 (2023). https://doi.org/10.1007/s43207-022-00250-9

    Article  CAS  Google Scholar 

  22. R.A. Shishkin, Y.V. Yuferov, R.P. Karagergl, A.V. Schak, Microstructural and mechanical properties of pressureless sintered high-wear-resistant SiC composite materials. J. Korean Ceram. Soc. 60, 75–89 (2023). https://doi.org/10.1007/s43207-022-00242-9

    Article  CAS  Google Scholar 

  23. H.Y. Xu, J.H. Ruan, F.L. Liu, D.C. Li, F.J. Zhang, A.G. Wang, D.S. Sun, W.C. Oh, Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs. J. Korean Ceram. Soc. 59, 289–301 (2022). https://doi.org/10.1007/s43207-021-00127-3

    Article  CAS  Google Scholar 

  24. A. Razmjoo, H.R. Baharvandi, N. Ehsani, Pressureless sintering of SiC matrix composites reinforced with nano-β-SiC and graphene. J. Korean Ceram. Soc. 59, 729–741 (2022). https://doi.org/10.1007/s43207-022-00213-0

    Article  CAS  Google Scholar 

  25. X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, Q. Zhang, A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213

    Article  CAS  Google Scholar 

  26. P. Albertus et al., Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett. 6, 1399–1404 (2021). https://doi.org/10.1021/acsenergylett.1c00445

    Article  CAS  Google Scholar 

  27. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k

    Article  CAS  Google Scholar 

  28. D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter. 3, 57–94 (2020). https://doi.org/10.1016/j.matt.2020.03.015

    Article  Google Scholar 

  29. C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, Protected Lithium-metal anodes in batteries: from liquid to solid. Adv. Mater. 29, 1701169 (2017). https://doi.org/10.1002/adma.201701169

    Article  CAS  Google Scholar 

  30. X.B. Cheng, J.Q. Huang, Q. Zhang, Review—li metal anode in working lithium-sulfur batteries. J. Electrochem. Soc. 165, A6058–A6072 (2018). https://doi.org/10.1149/2.0111801jes

    Article  CAS  Google Scholar 

  31. D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–204 (2017). https://doi.org/10.1038/NNANO.2017.16

    Article  CAS  Google Scholar 

  32. Q. Lv, Y. Jiang, B. Wang, Y. Chen, F. Jin, B. Wu, H. Ren, N. Zhang, R. Xu, Y. Li, T. Zhang, Y. Zhou, D. Wang, H. Liu, S. Dou, Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Rep. Phys. Sci. 3, 100706 (2022). https://doi.org/10.1016/j.xcrp.2021.100706

    Article  CAS  Google Scholar 

  33. L. Li, S. Li, Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries. Chem. Commun. 54, 6648–6661 (2018). https://doi.org/10.1039/c8cc02280a

    Article  CAS  Google Scholar 

  34. X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  Google Scholar 

  35. A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101

    Article  CAS  Google Scholar 

  36. P.P. Paul, B.R. Chen, S.A. Langevin, E.J. Dufek, J.N. Weker, J.S. Ko, Interfaces in all solid state Li-metal batteries: a review on instabilities, stabilization strategies, and scalability. Energy Storage Mater. 45, 969–1001 (2022). https://doi.org/10.1016/j.ensm.2021.12.021

    Article  Google Scholar 

  37. Z. Ding, J. Li, J. Li, C. An, Review-interfaces: key issue to be solved for all solid-state lithium battery technologies. J. Electrochem. Soc. 167, 070541 (2020). https://doi.org/10.1149/1945-7111/ab7f84

    Article  Google Scholar 

  38. J. Sastre, M.H. Futscher, L. Pompizi, A. Aribia, A. Priebe, J. Overbeck, M. Stiefel, A.N. Tiwari, Y.E. Romanyuk, Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte. Commun. Mater. 76, 1–10 (2021). https://doi.org/10.1038/s43246-021-00177-4

    Article  CAS  Google Scholar 

  39. Y. Shi, D. Zhou, M. Li, C. Wang, W. Wei, G. Liu, M. Jiang, W. Fan, Z. Zhang, X. Yao, Surface engineered Li metal anode for all-solid-state lithium metal batteries with high capacity. ChemElectroChem 8, 386–389 (2021). https://doi.org/10.1002/celc.202100010

    Article  CAS  Google Scholar 

  40. T. Deng, X. Ji, Y. Zhao, L. Cao, S. Li, S. Hwang, C. Luo, P. Wang, H. Jia, X. Fan, X. Lu, D. Su, X. Sun, C. Wang, J.G. Zhang, Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv. Mater. 32, 2000030 (2020). https://doi.org/10.1002/adma.202000030

    Article  CAS  Google Scholar 

  41. B. Xu, W. Li, H. Duan, H. Wang, Y. Guo, H. Li, H. Liu, Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J. Power Sources. 354, 68–73 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.026

    Article  CAS  Google Scholar 

  42. Y. Tian, F. Ding, H. Zhong, C. Liu, Y.B. He, J. Liu, X. Liu, Q. Xu, Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 14, 49–57 (2018). https://doi.org/10.1016/j.ensm.2018.02.015

    Article  Google Scholar 

  43. C. Wang, G. Bai, Y. Yang, X. Liu, H. Shao, Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 12, 217–223 (2019). https://doi.org/10.1007/s12274-018-2205-7

    Article  CAS  Google Scholar 

  44. E.M. Hitz, H. Xie, Y. Lin, Ion-conducting, electron-blocking layer for high-performance solid electrolytes. Small Struct. 2, 2100014 (2021). https://doi.org/10.1002/sstr.202100014

    Article  CAS  Google Scholar 

  45. S. Lee, S. Jung, S. Yang, J.H. Lee, H. Shin, J. Kim, S. Park, Revisiting the LiPON/Li thin film as a bifunctional interlayer for NASICON solid electrolyte-based lithium metal batteries. Appl. Surf. Sci. 586, 152790 (2022). https://doi.org/10.1016/j.apsusc.2022.152790

    Article  CAS  Google Scholar 

  46. S. Lee, K. Lee, S. Kim, K. Yoon, S. Han, M.H. Lee, Y. Ko, J.H. Noh, W. Kim, K. Kang, Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Sci. Adv. 8, eabq0153 (2022). https://doi.org/10.1126/sciadv.abq0153

    Article  CAS  Google Scholar 

  47. X. Shi, Y. Pang, B. Wang, H. Sun, X. Wang, Y. Li, J. Yang, H.W. Li, S. Zheng, In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries. Mater. Today Nano. 10, 100079 (2020). https://doi.org/10.1016/j.mtnano.2020.100079

    Article  Google Scholar 

  48. K. Lee, S. Han, J. Lee, S. Lee, J. Kim, Y. Ko, S. Kim, K. Yoon, J.H. Song, J.H. Noh, K. Kang, Multifunctional Interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 7, 381–389 (2022). https://doi.org/10.1021/acsenergylett.1c02332

    Article  CAS  Google Scholar 

  49. Z. Xu, H. Zhang, T. Yang, X. Chu, Y. Xie, Q. Wang, Y. Xia, W. Yang, Physicochemically dendrite-suppressed threedimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Rep. Phys. Sci. 2, 100644 (2021). https://doi.org/10.1016/j.xcrp.2021.100644

    Article  CAS  Google Scholar 

  50. X. Han, Y. Gong, K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/NMAT4821

    Article  CAS  Google Scholar 

  51. Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K.R. Adair, R. Li, C. Zhang, J. Liu, L.Y. Kuo, Y. Hu, T.K. Sham, L. Zhang, R. Yang, S. Lu, X. Song, X. Sun, Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl. Mater. Interfaces. 10, 31240–31248 (2018)

    Article  CAS  Google Scholar 

  52. L. Wang, L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li, H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 10, 16–23 (2018). https://doi.org/10.1016/j.ensm.2017.08.001

    Article  CAS  Google Scholar 

  53. Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J.B. Goodenough, Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018). https://doi.org/10.1021/jacs.8b03106

    Article  CAS  Google Scholar 

  54. C. Cui, Q. Ye, C. Zeng, S. Wang, X. Xu, T. Zhai, H. Li, One-step fabrication of garnet solid electrolyte with integrated lithiophilic surface. Energy Storage Mater. 45, 814–820 (2022). https://doi.org/10.1016/j.ensm.2021.12.027

    Article  Google Scholar 

  55. Y.G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy. 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z

    Article  CAS  Google Scholar 

  56. Y. Zhong, Y. Xie, S. Hwang, Q. Wang, J.J. Cha, D. Su, H. Wang, Highly efficient all-solid-state Lithium/electrolyte interface induced by an energetic reaction. Angew. Chem. Int. Ed. 59, 14003–14008 (2020). https://doi.org/10.1002/anie.202004477

    Article  CAS  Google Scholar 

  57. G. Ma, Z. Wen, M. Wu, C. Shen, Q. Wang, J. Jin, X. Wu, A lithium anode protection guided highly-stable lithium-sulfur battery. Chem. Commun. 50, 14209–14212 (2014). https://doi.org/10.1039/c4cc05535g

    Article  CAS  Google Scholar 

  58. Y.J. Zhang, W. Wang, H. Tang, W.Q. Bai, X. Ge, X.L. Wang, C.D. Gu, J.P. Tu, An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power Sources. 277, 304–311 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.023

    Article  CAS  Google Scholar 

  59. M. Wu, Z. Wen, Y. Liu, X. Wang, L. Huang, Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources. 196, 8091–8097 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.035

    Article  CAS  Google Scholar 

  60. K. Shi, Z. Wan, L. Yang, Y. Zhang, Y. Huang, S. Su, H. Xia, K. Jiang, L. Shen, Y. Hu, S. Zhang, J. Yu, F. Ren, Y.B. He, F. Kang, In-situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59, 11784–11788 (2020). https://doi.org/10.1002/anie.202000547

    Article  CAS  Google Scholar 

  61. Y. Li, Y. Sun, A. Pei, K. Chen, A. Vailionis, Y. Li, G. Zheng, J. Sun, Y. Cui, Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS. Cent. Sci. 4, 97–104 (2018). https://doi.org/10.1021/acscentsci.7b00480

    Article  CAS  Google Scholar 

  62. Y. Zhu, X. He, Y. Mo, Strategies based on nitride materials chemistry to stabilize li metal anode. Adv. Sci. 4, 1600517 (2017). https://doi.org/10.1002/advs.201600517

    Article  CAS  Google Scholar 

  63. H. Huo, J. Gao, N. Zhao, D. Zhang, N.G. Holmes, X. Li, Y. Sun, J. Fu, R. Li, X. Guo, X. Sun, A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun. 12, 176 (2021). https://doi.org/10.1038/s41467-020-20463-y

    Article  CAS  Google Scholar 

  64. H.J. Choi, D.W. Kang, J.W. Park, J.H. Park, Y.J. Lee, Y.C. Ha, S.M. Lee, S.Y. Yoon, B.G. Kim, In Situ formed ag-li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv. Sci. 9, 2103826 (2022). https://doi.org/10.1002/advs.202103826

    Article  CAS  Google Scholar 

  65. M. Du, Y. Sun, B. Liu, B. Chen, K. Liao, R. Ran, R. Cai, W. Zhou, Z. Shao, Smart construction of an intimate lithium | garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv. Funct. Mater. 31, 2101556 (2021). https://doi.org/10.1002/adfm.202101556

    Article  CAS  Google Scholar 

  66. J. Tao, D. Wang, Y. Yang, J. Li, Z. Huang, S. Mathur, Z. Hong, Y. Lin, Swallowing lithium dendrites in all-solid-state battery by Lithiation with silicon nanoparticles. Adv. Sci. 9, 2103786 (2022). https://doi.org/10.1002/advs.202103786

    Article  CAS  Google Scholar 

  67. X. He, X. Ji, B. Zhang, N.D. Rodrigo, S. Hou, K. Gaskell, T. Deng, H. Wan, S. Liu, J. Xu, B. Nan, B.L. Lucht, C. Wang, Tuning Interface Lithiophobicity for Lithium metal solid-state batteries. ACS Energy Lett. 7, 131–139 (2022). https://doi.org/10.1021/acsenergylett.1c02122

    Article  CAS  Google Scholar 

  68. S.Y. Chun, Characteristics of HfN coatings by inductively coupled plasma-assisted magnetron sputtering. J. Korean Ceram. Soc. 58, 178–183 (2021). https://doi.org/10.1007/s43207-020-00084-3

    Article  CAS  Google Scholar 

  69. J. Kang, J. Yun, Y.Y. Oh, S.J. Kim, M. Kamiko, N.H. Kim, J.H. Koh, Defects controlled stress engineering in Al-doped ZnO transparent multilayered thin films. J. Korean Ceram. Soc. 59, 742–748 (2022). https://doi.org/10.1007/s43207-022-00214-z

    Article  CAS  Google Scholar 

  70. J.U. Woo, S.W. Kim, D.S. Kim, I.S. Kim, H.S. Shin, S. Nahm, Growth and piezoelectric properties of amorphous and crystalline (K1−xNax)NbO3−based thin films. J. Korean Ceram. Soc. 58, 249–268 (2021). https://doi.org/10.1007/s43207-021-00108-6

    Article  CAS  Google Scholar 

  71. Y. Ren, Y. Shen, Y. Lin, C.W. Nan, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015). https://doi.org/10.1016/j.elecom.2015.05.001

    Article  CAS  Google Scholar 

  72. E.J. Cheng, A. Sharafi, J. Sakamoto, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta. 223, 85–91 (2017). https://doi.org/10.1016/j.electacta.2016.12.018

    Article  CAS  Google Scholar 

  73. F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy. 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z

    Article  CAS  Google Scholar 

  74. J.N. Bates, N.J. Dudney, D.C. Lubben, G.R. Gruzalski, B.S. Kwak, X. Yu, R.A. Zuhr, Thin-film rechargeable lithium batteries. J. Power Sources. 54, 58–62 (1995). https://doi.org/10.1016/0378-7753(94)02040-A

    Article  CAS  Google Scholar 

  75. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1

    Article  CAS  Google Scholar 

  76. N.J. Dudney, Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B. 116, 245–249 (2005). https://doi.org/10.1016/j.mseb.2004.05.045

    Article  CAS  Google Scholar 

  77. J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015). https://doi.org/10.1002/aenm.201401408

    Article  CAS  Google Scholar 

  78. B. Zhou, L. Guo, Y. Zhang, J. Wang, L. Ma, W.H. Zhang, Z. Fu, Z. Peng, A high-performance Li–O2 battery with a strongly solvating Hexamethylphosphoramide electrolyte and a Lipon-protected lithium anode. Adv. Mater. 29, 1701568 (2017). https://doi.org/10.1002/adma.201701568

    Article  CAS  Google Scholar 

  79. A.S. Westover, N.J. Dudney, R.L. Sacci, S. Kalnaus, Deposition and confinement of li metal along an artificial Lipon-Lipon interface. ACS Energy Lett. 4, 651–655 (2019). https://doi.org/10.1021/acsenergylett.8b02542

    Article  CAS  Google Scholar 

  80. F. Sagane, R. Shimokawa, H. Sano, H. Sakaebe, Y. Iriyama, In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. J. Power Sources. 225, 245–250 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.026

    Article  CAS  Google Scholar 

  81. J.H. Kim, C.F. Xiao, J. Han, Y.J. Kim, S. Yagi, H.S. Kim, Interface control for high-performance all-solid-state Li thin-film batteries. Ceram. Int. 46, 19960–19965 (2020). https://doi.org/10.1016/j.ceramint.2020.05.063

    Article  CAS  Google Scholar 

  82. A. Schwobel, R. Hausbrand, W. Jaegermann, Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion. 273, 51–54 (2015). https://doi.org/10.1016/j.ssi.2014.10.017

    Article  CAS  Google Scholar 

  83. W. Wang, X. Yue, J. Meng, J. Wang, X. Wang, H. Chen, D. Shi, J. Fu, Y. Zhou, J. Chen, Z. Fu, Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019). https://doi.org/10.1016/j.ensm.2018.08.010

    Article  Google Scholar 

  84. A.C. Kozen, C.F. Lin, O. Zhao, S.B. Lee, G.W. Rubloff, M. Noked, Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem. Mater. 29, 6298–6307 (2017). https://doi.org/10.1021/acs.chemmater.7b01496

    Article  CAS  Google Scholar 

  85. J. Ko, D.H. Cho, D.J. Kim, Y.S. Yoon, Suppression of formation of lithium dendrite via surface modification by 2-D lithium phosphorous oxynitride as a highly stable anode for metal lithium batteries. J. Alloy. Compd. 845, 156280 (2020). https://doi.org/10.1016/j.jallcom.2020.156280

    Article  CAS  Google Scholar 

  86. J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W.A. Henderson, Y. Zhang, J.G. Zhang, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15, 135–144 (2015). https://doi.org/10.1016/j.nanoen.2015.04.009

    Article  CAS  Google Scholar 

  87. X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989

    Article  CAS  Google Scholar 

  88. E. Markevich, G. Salitra, D. Aurbach, Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced li-ion batteries. ACS Energy Lett. 2, 1337–1345 (2017). https://doi.org/10.1021/acsenergylett.7b00163

    Article  CAS  Google Scholar 

  89. L. Liao, X. Cheng, Y. Ma, P. Zuo, W. Fang, G. Yin, Y. Gao, Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochim. Acta. 87, 466–472 (2013). https://doi.org/10.1016/j.electacta.2012.09.083

    Article  CAS  Google Scholar 

  90. G. Salitra, E. Markevich, M. Afri, Y. Talyosef, P. Hartmann, J. Kulisch, Y.K. Sun, D. Aurbach, High-performance cells containing lithium metal anodes LiNi0.6Co0.2Mn0.2O2 (NCM 622) cathodes, and fluoroethylene carbonate-based electrolyte solution with practical loading. ACS Appl. Mater. Interfaces. 10, 19773–19782 (2018). https://doi.org/10.1021/acsami.8b07004

    Article  CAS  Google Scholar 

  91. E. Markevich, G. Salitra, Y. Talyosef, U.H. Kim, H.H. Ryu, Y.K. Sun, D. Aurbach, High-performance LiNiO2 cathodes with practical loading cycled with Li metal anodes in fluoroethylene carbonate-based electrolyte solution. ACS Appl. Energy. Mater. 1, 2600–2607 (2018). https://doi.org/10.1021/acsaem.8b00304

    Article  CAS  Google Scholar 

  92. S.J. Park, J.Y. Hwang, C.S. Yoon, H.G. Jung, Y.K. Sun, Stabilization of lithium-metal batteries based on the in situ formation of a stable solid electrolyte interphase layer. ACS Appl. Mater. Interfaces. 10, 17985–17993 (2018). https://doi.org/10.1021/acsami.8b04592

    Article  CAS  Google Scholar 

  93. Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). https://doi.org/10.1038/NMAT4041

    Article  CAS  Google Scholar 

  94. X.Q. Zhang, X. Chen, R. Xu, X.B. Cheng, H.J. Peng, R. Zhang, J.Q. Huang, Q. Zhang, Columnar lithium metal anodes. Angew. Chem. Int. Ed. 56, 14207–14211 (2017). https://doi.org/10.1002/anie.201707093

    Article  CAS  Google Scholar 

  95. D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu, B. Dunn, Y. Cui, Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon. Nano lett. 17, 3731–3737 (2017). https://doi.org/10.1021/acs.nanolett.7b01020

    Article  CAS  Google Scholar 

  96. Z. Liu, Y. Qi, Y.X. Lin, L. Chen, P. Lu, L.Q. Chen, Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016). https://doi.org/10.1149/2.0151605jes

    Article  CAS  Google Scholar 

  97. J. Lang, Y. Long, J. Qu, X. Luo, H. Wei, K. Huang, H. Zhang, L. Qi, Q. Zhang, Z. Li, H. Wu, One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 16, 85–90 (2019). https://doi.org/10.1016/j.ensm.2018.04.024

    Article  Google Scholar 

  98. L. Fan, H.L. Zhuang, L. Gao, Y. Lu, L.A. Archer, Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A. 5, 3483–3492 (2017). https://doi.org/10.1039/c6ta10204b

    Article  CAS  Google Scholar 

  99. Z. Peng, N. Zhao, Z. Zhang, H. Wan, H. Lin, G. Shen, H. He, X. Guo, J.G. Zhang, D. Wang, Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy 39, 662–672 (2017). https://doi.org/10.1016/j.nanoen.2017.07.052

    Article  CAS  Google Scholar 

  100. J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, J. Christensen, Y. Cui, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3, 3170 (2017)

    Article  Google Scholar 

  101. J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, Y. Cui, Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251

    Article  CAS  Google Scholar 

  102. J. Ko, Y.S. Yoon, Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries? Ceram. Int. 45, 30–49 (2019). https://doi.org/10.1016/j.ceramint.2018.09.287

    Article  CAS  Google Scholar 

  103. H. Zhu, M.H.A. Shiraz, L. Liu, Y. Hu, J. Liu, A facile and low-cost Al2O3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries. Nanotechnology 32, 144001 (2021). https://doi.org/10.1088/1361-6528/abd580

    Article  CAS  Google Scholar 

  104. A. Friesen, S. Hildebrand, F. Horsthemke, M. Borner, R. Klopsch, P. Niehoff, F.M. Schappacher, M. Winter, Al2O3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior. J. Power Sources. 363, 70–77 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.062

    Article  CAS  Google Scholar 

  105. A. Zhou, Q. Liu, Y. Wang, W. Wang, X. Yao, W. Hu, L. Zhang, X. Yu, J. Li, H. Li, Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. J. Mater. Chem. A. 5, 24361–24370 (2017). https://doi.org/10.1039/c7ta07312g

    Article  CAS  Google Scholar 

  106. R.S. Negi, M.T. Elm, Reproducible long-term cycling data of Al2O3 coated LiNi0.70Co0.15Mn0.15O2 cathodes for lithium-ion batteries. Sci. Data. 9, 127 (2022). https://doi.org/10.1038/s41597-022-01217-5

    Article  CAS  Google Scholar 

  107. Y. He, X. Yu, Y. Wang, H. Li, X. Huang, Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv. Mater. 23, 4938–4941 (2011). https://doi.org/10.1002/adma.201102568

    Article  CAS  Google Scholar 

  108. H.T. Nguyen, M.R. Zamfir, L.D. Duong, Y.H. Lee, P. Bondavalli, D. Pribat, Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes. J. Mater. Chem. 22, 24618 (2012). https://doi.org/10.1039/c2jm35125k

    Article  CAS  Google Scholar 

  109. F.F. Cao, J.W. Deng, S. Xin, H.X. Ji, O.G. Schmidt, L.J. Wan, Y.G. Guo, Cu-Si Nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 23, 4415–4420 (2011). https://doi.org/10.1002/adma.201102062

    Article  CAS  Google Scholar 

  110. S. Neudeck, A. Mazilkin, C. Reitz, P. Hartmann, J. Janek, T. Brezesinski, Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries. Sci Rep. 9, 5328 (2019). https://doi.org/10.1038/s41598-019-41767-0

    Article  CAS  Google Scholar 

  111. D. Guan, J.A. Jeevarajan, Y. Wang, Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. Nanoscale 3, 1465–1469 (2011). https://doi.org/10.1039/c0nr00939c

    Article  CAS  Google Scholar 

  112. E. Kang, Y.S. Jung, A.S. Cavanagh, G.H. Kim, S.M. George, A.C. Dillon, J.K. Kim, J. Lee, Fe3O4 nanoparticles confined in Mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 21, 2430–2438 (2011). https://doi.org/10.1002/adfm.201002576

    Article  CAS  Google Scholar 

  113. D. Mohanty, K. Dahlberg, D.M. King, L.A. David, A.S. Sefat, D.L. Wood, C. Daniel, S. Dhar, V. Mahajan, M. Lee, F. Albano, Modification of Ni-Rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries. Sci Rep. 6, 26532 (2016). https://doi.org/10.1038/srep26532

    Article  CAS  Google Scholar 

  114. W. Zhu, X. Huang, T. Liu, Z. Xie, Y. Wang, K. Tian, L. Bu, H. Wang, L. Gao, J. Zhao, Ultrathin Al2O3 coating on LiNi08Co01Mn01O2 cathode material for enhanced cyclability at extended voltage ranges. Coatings 9, 92 (2019). https://doi.org/10.3390/coatings9020092

    Article  CAS  Google Scholar 

  115. I.D. Scott, Y.S. Jung, A.S. Cavanagh, Y. Yan, A.C. Dillon, S.M. George, S.H. Lee, Ultrathin coatings on Nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 11, 414–418 (2011). https://doi.org/10.1021/nl1030198

    Article  CAS  Google Scholar 

  116. Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe li-ion batteries. Adv. Mater. 22, 2172–2176 (2010). https://doi.org/10.1002/adma.200903951

    Article  CAS  Google Scholar 

  117. X. Xiao, P. Lu, D. Ahn, Ultrathin multifunctional oxide coatings for lithium ion batteries. Adv. Mater. 23, 3911–3915 (2011). https://doi.org/10.1002/adma.201101915

    Article  CAS  Google Scholar 

  118. Y.S. Jung, P. Lu, A.S. Cavanagh, C. Ban, G.H. Kim, S.H. Lee, S.M. George, S.J. Harris, A.C. Dillon, Unexpected Improved performance of ALD coated LiCoO2 / graphite Li-ion batteries. Adv. Energy Mater. 3, 213–219 (2013). https://doi.org/10.1002/aenm.201200370

    Article  CAS  Google Scholar 

  119. L. David, K. Dahlberg, D. Mohanty, R.E. Ruther, A. Huq, M. Chi, S.J. An, C. Mao, D.M. King, L. Stevenson, D.L. Wood, Unveiling the role of Al2O3 in preventing surface reconstruction during high-voltage cycling of lithium-ion batteries. ACS Appl. Energy Mater. 2, 1308–1313 (2019). https://doi.org/10.1021/acsaem.8b01877

    Article  CAS  Google Scholar 

  120. T.T. Tung, M. Moussa, K.M. Tripathi, T.Y. Kim, M.J. Nine, A.K. Nanjundan, D. Dubal, D. Lisic, Coupling graphene microribbons with carbon nanofibers: New carbon hybrids for high-performing lithium and potassium-ion batteries. Sustain. Mater. Technol. 32, e00393 (2022). https://doi.org/10.1016/j.susmat.2022.e00393

    Article  CAS  Google Scholar 

  121. T.D. Nguyen, J.S. Lee, Electrospinning-based carbon nanofibers for energy and sensor applications. Appl. Sci. 12, 6048 (2022). https://doi.org/10.3390/app12126048

    Article  CAS  Google Scholar 

  122. J.W. Park, S.C. Jo, M.J. Kim, I.H. Choi, B.G. Kim, Y.J. Lee, H.Y. Choi, S. Kang, T.Y. Kim, K.J. Baeg, Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators. NPG Asia Mater. 13, 30 (2021). https://doi.org/10.1038/s41427-021-00295-y

    Article  CAS  Google Scholar 

  123. S.G. Kim, J. Jun, Y.K. Kim, J. Kim, J.S. Lee, J. Jang, Facile synthesis of Co3O4-incorporated multichannel carbon nanofibers for electrochemical applications. ACS Appl. Mater. Interfaces. 12, 20613–20622 (2020). https://doi.org/10.1021/acsami.0c06254

    Article  CAS  Google Scholar 

  124. S.C. Jo, J.W. Hong, I.H. Choi, M.J. Kim, B.G. Kim, Y.J. Lee, H.Y. Choi, D. Kim, T.Y. Kim, K.J. Baeg, J.W. Park, Multimodal capturing of polysulfides by phosphorus-doped carbon composites for flexible high-energy-density lithium-sulfur batteries. Small 18, 2200326 (2022). https://doi.org/10.1002/smll.202200326

    Article  CAS  Google Scholar 

  125. S. Joo, C.E. Lee, J. Kang, S. Seo, Y.K. Song, J.H. Kim, Intaglio contact printing of versatile carbon nanotube composites and its applications for miniaturizing high-performance devices. Small 18, 2106174 (2022). https://doi.org/10.1002/smll.202106174

    Article  CAS  Google Scholar 

  126. B.J. Neudecker, N.J. Dudney, J.B. Bates, “Lithium-Free” thin-film battery with in situ plated li anode. J. Electrochem. Soc. 147, 517–523 (2000). https://doi.org/10.1149/1.1393226

    Article  CAS  Google Scholar 

  127. Y. Fang, S.L. Zhang, Z.P. Wu, D. Luan, X.W. Lou, A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 7, 3626 (2021). https://doi.org/10.1126/sciadv.abg3626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021M1A7A4092589).

Funding

National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), NRF-2021M1A7A4092589.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Yoon.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J., Yoon, Y.S. Functional materials for modifying interfaces between solid electrolytes and lithium electrodes of all-solid-state lithium metal batteries. J. Korean Ceram. Soc. 60, 591–613 (2023). https://doi.org/10.1007/s43207-023-00293-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00293-6

Keywords

Navigation