Skip to main content
Log in

Densification, microstructural characterization, and the electrochemical behaviour of spark-plasma sintered Ti6Al4V-5Cr-TiB2 composites

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The impacts of Cr-TiB2 addition on densification, hardness, microstructure, phase transformation, and corrosion were examined. The results indicated an even and uniform dispersion of TiB2 particles in the titanium matrix, with no noticeable interfaces throughout the sintering process. The relative density of the sintered titanium-based composites dropped, with an increase in TiB2 percentage. The microhardness result indicated that Ti6Al4V has 326 HV0.5, while the maximum hardness was 598 HV0.5, produced from 20 wt.% TiB2 ceramic particles. The Ti6Al4V alloy depicts α-phase forms parallel plates in the prior β-grain borders and expands into the β-grain to create α-colonies, while the addition of 5–20 wt.% Cr-TiB2 resulted in a microstructural transformation characterized by equiaxed α-precipitates embedded within the β-phase matrix, for all samples. The electrochemical behaviour revealed that the Ecorr decreased as TiB2 increased, while the icorr was higher. However, samples containing 5Cr and 5Cr-5TiB2 moved to a more positive Ecorr region, whereas the icorr altered to a more negative area. This meant that the presence of ceramic reinforcements increased the corrosion resistance of the alloys and that higher concentrations of titanium diboride provided less protection against ion attack in a chloride environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. S.C. Tjong, Y.-W. Mai, Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583–601 (2008)

    Article  CAS  Google Scholar 

  2. I.M. Melendez, E. Neubauer, P. Angerer, H. Danninger, J.M. Torralba, Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites. Compos. Sci. Technol. 71, 1154–1162 (2011)

    Article  CAS  Google Scholar 

  3. O.E. Falodun, B.A. Obadele, S.R. Oke, A.M. Okoro, P.A. Olubambi, Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-018-03281-x

    Article  Google Scholar 

  4. M.D. Hayat, H. Singh, Z. He, P. Cao, Titanium metal matrix composites: an overview. Compos. Part A Appl. Sci. Manuf. 121, 418–438 (2019)

    Article  CAS  Google Scholar 

  5. L. Huang, L. Geng, Discontinuously reinforced titanium matrix composites (Springer, Berlin, 2017)

    Book  Google Scholar 

  6. T.P. Nguyen, S.A. Delbari, Y. Azizian-Kalandaragh, A. Babapoor, Q. Van Le, A.S. Namini, M. Shokouhimehr, M.S. Asl, Characteristics of quadruplet Ti–Mo–TiB2–TiC composites prepared by spark plasma sintering. Ceram. Int. 46, 20885–20895 (2020)

    Article  CAS  Google Scholar 

  7. J. Lin, Y. Yang, H. Zhang, J. Gong, Effects of CNTs content on the microstructure and mechanical properties of spark plasma sintered TiB2-SiC ceramics. Ceram. Int. 43, 1284–1289 (2017)

    Article  CAS  Google Scholar 

  8. P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness. Mater. Sci. Eng. A. 529, 62–73 (2011)

    Article  CAS  Google Scholar 

  9. Z. Fu, R. Koc, Sintering and mechanical properties of TiB2-TiC-Ni using submicron borides and carbides. Mater. Sci. Eng. A. 676, 278–288 (2016)

    Article  CAS  Google Scholar 

  10. Y. Jiao, L. Huang, L. Geng, Progress on discontinuously reinforced titanium matrix composites. J. Alloys Compd. 767, 1196–1215 (2018)

    Article  CAS  Google Scholar 

  11. S.W. Maseko, A.P.I. Popoola, O.S.I. Fayomi, Characterization of ceramic reinforced titanium matrix composites fabricated by spark plasma sintering for anti-ballistic applications. Def. Technol. 14, 408–411 (2018)

    Article  Google Scholar 

  12. A.S. Namini, A. Motallebzadeh, B. Nayebi, M.S. Asl, M. Azadbeh, Microstructure–mechanical properties correlation in spark plasma sintered Ti–4.8 wt.% TiB2 composites. Mater. Chem. Phys. 223, 789–796 (2019)

    Article  Google Scholar 

  13. O.E. Falodun, B.A. Obadele, S.R. Oke, M.E. Maja, P.A. Olubambi, Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.11.140

    Article  Google Scholar 

  14. S. Samal, O. Molnárová, F. Průša, J. Kopeček, L. Heller, P. Šittner, M. Škodová, L. Abate, I. Blanco, Net-shape NiTi shape memory alloy by spark plasma sintering method. Appl. Sci. 11, 1802 (2021)

    Article  CAS  Google Scholar 

  15. A.L. Rominiyi, P.M. Mashinini, Nanoindentation study of mechanical and wear properties of spark plasma sintered Ti-6Ni-xTiCN composites (Ceram, Int, 2022)

    Google Scholar 

  16. A.S. Namini, M. Azadbeh, M.S. Asl, Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiBw composites. Adv. Powder Technol. 28, 1564–1572 (2017)

    Article  Google Scholar 

  17. X. Shen, Z. Zhang, S. Wei, F. Wang, S. Lee, Microstructures and mechanical properties of the in situ TiB–Ti metal–matrix composites synthesized by spark plasma sintering process. J. Alloys Compd. 509, 7692–7696 (2011)

    Article  CAS  Google Scholar 

  18. S.A. Delbari, A.S. Namini, M.S. Asl, Hybrid Ti matrix composites with TiB2 and TiC compounds. Mater. Today Commun. 20, 100576 (2019)

    Article  CAS  Google Scholar 

  19. A. Couret, G. Molénat, J. Galy, M. Thomas, Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics 16, 1134–1141 (2008)

    Article  CAS  Google Scholar 

  20. O.E. Falodun, S.R. Oke, B.A. Obadele, A.M. Okoro, P.A. Olubambi, Influence of SiAlON ceramic reinforcement on Ti6Al4V alloy matrix via spark plasma sintering technique. Met. Mater. Int. 27(6), 1769–1778 (2019)

    Article  Google Scholar 

  21. S.R. Oke, O.O. Ige, O.E. Falodun, B.A. Obadele, M.B. Shongwe, P.A. Olubambi, Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite. J. Mater. Res. Technol. 7, 126–134 (2018)

    Article  CAS  Google Scholar 

  22. M.S. Abd-Elwahed, A.F. Ibrahim, M.M. Reda, Effects of ZrO2 nanoparticle content on microstructure and wear behavior of titanium matrix composite. J. Mater. Res. Technol. 9, 8528–8534 (2020)

    Article  CAS  Google Scholar 

  23. X. Zhang, J.-Y. Hu, B.-X. Dong, X. Li, S.-Q. Kou, S. Zhang, F. Qiu, Effect of Cu and Zn elements on morphology of ceramic particles and interfacial bonding in TiB2/Al composites (Ceram, Int, 2022)

    Book  Google Scholar 

  24. Z. Yin, J. Yuan, W. Xu, M. Chen, S. Yan, Z. Wang, Effect of Ni and graphene on microstructure and toughness of titanium boride ceramic tool material prepared by spark plasma sintering. Ceram. Int. 44, 20299–20305 (2018)

    Article  CAS  Google Scholar 

  25. D. Hill, R. Banerjee, D. Huber, J. Tiley, H.L. Fraser, Formation of equiaxed alpha in TiB reinforced Ti alloy composites. Scr. Mater. 52, 387–392 (2005)

    Article  CAS  Google Scholar 

  26. M. Anandajothi, S. Ramanathan, V. Ananthi, P. Narayanasamy, Fabrication and characterization of Ti6Al4V/TiB2–TiC composites by powder metallurgy method. Rare Met. 36, 806–811 (2017)

    Article  CAS  Google Scholar 

  27. J. Dong, F. Li, C. Wang, Micromechanical behavior study of α phase with different morphologies of Ti–6Al–4V alloy by microindentation. Mater. Sci. Eng. A. 580, 105–113 (2013)

    Article  CAS  Google Scholar 

  28. Z. Doni, A.C. Alves, F. Toptan, A.M. Pinto, L.A. Rocha, M. Buciumeanu, L. Palaghian, F.S. Silva, Tribocorrosion behaviour of hot pressed CoCrMo− Al2O3 composites for biomedical applications, Tribol. Surfaces. Interfaces 8, 201–208 (2014)

    CAS  Google Scholar 

  29. N. Dai, L.-C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, C. Yang, Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci. 111, 703–710 (2016)

    Article  CAS  Google Scholar 

  30. S.O. Akinwamide, O.J. Akinribide, P.A. Olubambi, Influence of ferrotitanium and silicon carbide addition on structural modification, nanohardness and corrosion behaviour of stir-cast aluminium matrix composites. SILICON 13, 2221–2232 (2021)

    Article  CAS  Google Scholar 

  31. M. Dinu, E.S.M. Mouele, A.C. Parau, A. Vladescu, L.F. Petrik, M. Braic, Enhancement of the corrosion resistance of 304 stainless steel by Cr–N and Cr (N, O) coatings. Coatings 8, 132 (2018)

    Article  Google Scholar 

  32. J.R. Deepak, V.K.B. Raja, G.S. Kaliaraj, Mechanical and corrosion behavior of Cu, Cr, Ni and Zn electroplating on corten A588 steel for scope for betterment in ambient construction applications. Results Phys. 14, 102437 (2019)

    Article  Google Scholar 

  33. Q. Feng, T. Li, H. Teng, X. Zhang, Y. Zhang, C. Liu, J. Jin, Investigation on the corrosion and oxidation resistance of Ni–Al2O3 nano-composite coatings prepared by sediment co-deposition. Surf. Coatings Technol. 202, 4137–4144 (2008)

    Article  CAS  Google Scholar 

  34. O.E. Falodun, B.A. Obadele, S.R. Oke, M.E. Maja, O.O. Ige, P.A. Olubambi, Corrosion behaviour of spark plasma sintered Ti-6Al-4V with Nano-TiN addition in different media, in: 2018 IEEE 9th Int. Conf. Mech. Intell. Manuf. Technol. ICMIMT 2018, 2018

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

OF conceptualization, research laboratory works, data validation, report writing. SO laboratory work, report writing, and discussion of data. SA research laboratory work, report writing. PO review and laboratory funding support.

Corresponding author

Correspondence to Oluwasegun Eso Falodun.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to this article’s content.

Ethical approval

The submitted work is original and has not been published elsewhere in any form or language.

Consent to participate

All authors agreed and participated in the production of the manuscript.

Consent for publication

The authors agreed to consideration and its publication for peer review with your journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falodun, O.E., Oke, S.R., Akinwamide, O.S. et al. Densification, microstructural characterization, and the electrochemical behaviour of spark-plasma sintered Ti6Al4V-5Cr-TiB2 composites. J. Korean Ceram. Soc. 60, 527–535 (2023). https://doi.org/10.1007/s43207-022-00282-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00282-1

Keywords

Navigation