Skip to main content
Log in

Large intraparticle mesoporosity of hierarchical ZSM-5 synthesized from kaolin using silicalite seed: effect of aging time and temperature

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The development of a simple, effective, and replicable method for the formation of hierarchically structured materials from natural sources has drawn significant research interest recently. The current study analyzes the two-step hydrothermal synthesis of Indonesian kaolin to hierarchical ZSM-5. The aging temperature and time are the two crucial parameters that contributed to the intraparticle mesoporosity of ZSM-5. The aging step is a decisive step in the nucleation process of zeolite synthesis, this step can affect the crystal and pore structure of the zeolite product. N2 adsorption–desorption with the NLDFT method was used to determine the intraparticle mesoporosity at P/P0 = 0.3–0.4. The large intraparticle mesoporosity enables materials to have wide structural functions owing to intensify accessibility and mass transport properties. A statistical experimental design based on the Taguchi method with L9 orthogonal array and analysis of variance (ANOVA) was employed to identify the percentage of contribution for each parameter on the development of mesoporosity. The optimum aging condition at 70 °C for 6 h with the S/N ratio of 49.630, produced intracrystalline mesopore ZSM-5 with the largest mesoporous surface area of 303.067 m2/g and 0.596 cc/g of the pore volume. The relationship between aging time and temperature in the mesostructured creation in hierarchical ZSM-5 was revealed by the data analysis of the interaction plot for the S/N ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.T.M. Kadja, T.R. Suprianti, M.M. Ilmi, M. Khalil, R.R. Mukti, Subagjo: sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites. Microporous Mesoporous Mater. 308, 110550 (2020). https://doi.org/10.1016/j.micromeso.2020.110550

    Article  CAS  Google Scholar 

  2. Y. Gu, Z. Liu, C. Yu, X. Gu, L. Xu, Y. Gao, J. Ma, Zeolite adsorption isotherms predicted by pore channel and local environmental descriptors: feature learning on DFT binding strength. J. Phys. Chem. C. 124, 9314–9328 (2020). https://doi.org/10.1021/acs.jpcc.0c00130

    Article  CAS  Google Scholar 

  3. R. Ling, W. Chen, J. Hou, Preparation of modified MFI (ZSM-5 and silicalite-1) zeolites for potassium extraction from seawater. Particuology. 36, 190–192 (2018). https://doi.org/10.1016/j.partic.2017.04.003

    Article  CAS  Google Scholar 

  4. K.M. Wojciechowska, M. Król, T. Bajda, W. Mozgawa, Sorption of heavy metal cations on mesoporous ZSM-5 and mordenite zeolites. Materials (Basel). 12, 1–18 (2019). https://doi.org/10.3390/ma12193271

    Article  CAS  Google Scholar 

  5. C.M. Lok, J. Van Doorn, G. Aranda Almansa, Promoted ZSM-5 catalysts for the production of bio-aromatics, a review. Renew. Sustain. Energy Rev. 113, 109248 (2019). https://doi.org/10.1016/j.rser.2019.109248

    Article  CAS  Google Scholar 

  6. S. Chandrasekhar, P.N. Pramada, Microwave assisted synthesis of zeolite A from metakaolin. Microporous Mesoporous Mater. 108, 152–161 (2008). https://doi.org/10.1016/j.micromeso.2007.04.003

    Article  CAS  Google Scholar 

  7. M. Foroughi, A. Salem, S. Salem, Characterization of phase transformation from low grade kaolin to zeolite LTA in fusion technique: focus on quartz melting and crystallization in presence of NaAlO2. Mater. Chem. Phys. 258, 123892 (2021). https://doi.org/10.1016/j.matchemphys.2020.123892

    Article  CAS  Google Scholar 

  8. S.K. Kirdeciler, B. Akata, One pot fusion route for the synthesis of zeolite 4A using kaolin. Adv. Powder Technol. 31, 4336–4343 (2020). https://doi.org/10.1016/j.apt.2020.09.012

    Article  CAS  Google Scholar 

  9. M.I. Binay, S.K. Kirdeciler, B. Akata, Development of antibacterial powder coatings using single and binary ion-exchanged zeolite A prepared from local kaolin. Appl. Clay Sci. 182, 105251 (2019). https://doi.org/10.1016/j.clay.2019.105251

    Article  CAS  Google Scholar 

  10. A.Á.B. Maia, R.N. Dias, R.S. Angélica, R.F. Neves, Influence of an aging step on the synthesis of zeolite NaA from Brazilian Amazon kaolin waste. J. Mater. Res. Technol. 8, 2924–2929 (2019). https://doi.org/10.1016/j.jmrt.2019.02.021

    Article  CAS  Google Scholar 

  11. D. Hartanto, R. Kurniawati, A.B. Pambudi, W.P. Utomo, W.L. Leaw, H. Nur, One-pot non-template synthesis of hierarchical ZSM-5 from kaolin source. Solid State Sci. 87, 150–154 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.11.015

    Article  CAS  Google Scholar 

  12. T.W. Hartati, R.R. Mukti, I.A. Kartika, P.B. DeaFirda, S.D. Sumbogo, D. Prasetyoko, H. Bahruji, Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. J. Energy Inst. 93, 2238–2246 (2020). https://doi.org/10.1016/j.joei.2020.06.006

    Article  CAS  Google Scholar 

  13. I.Y. Mohammed, Y.A. Abakr, F.K. Kazi, In-situ upgrading of napier grass pyrolysis vapour over microporous and hierarchical mesoporous zeolites. Waste Biomass Valoriz. 9, 1415–1428 (2018). https://doi.org/10.1007/s12649-017-9925-x

    Article  CAS  Google Scholar 

  14. I.Y. Mohammed, Y.A. Abakr, S. Yusup, P.A. Alaba, K.I. Morris, Y.M. Sani, F.K. Kazi, Upgrading of Napier grass pyrolytic oil using microporous and hierarchical mesoporous zeolites: products distribution, composition and reaction pathways. J. Clean. Prod. 162, 817–829 (2017). https://doi.org/10.1016/j.jclepro.2017.06.105

    Article  CAS  Google Scholar 

  15. L. Zhao, B. Shen, J. Gao, C. Xu, Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. J. Catal. 258, 228–234 (2008). https://doi.org/10.1016/j.jcat.2008.06.015

    Article  CAS  Google Scholar 

  16. T. Zhao, F. Li, H. Yu, S. Ding, Z. Li, X. Huang, X. Li, X. Wei, Z. Wang, H. Lin, Synthesis of mesoporous ZSM-5 zeolites and catalytic cracking of ethanol and oleic acid into light olefins. Appl. Catal. A Gen. 575, 101–110 (2019). https://doi.org/10.1016/j.apcata.2019.02.011

    Article  CAS  Google Scholar 

  17. H. Zhu, Z. Liu, D. Kong, Y. Wang, X. Yuan, Z. Xie, Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. J. Colloid Interface Sci. 331, 432–438 (2009). https://doi.org/10.1016/j.jcis.2008.11.071

    Article  CAS  Google Scholar 

  18. I. Qoniah, D. Prasetyoko, H. Bahruji, S. Triwahyono, A.A. Jalil, H. Suprapto, T.E. Purbaningtias, Direct synthesis of mesoporous aluminosilicates from Indonesian kaolin clay without calcination. Appl. Clay Sci. 118, 290–294 (2015). https://doi.org/10.1016/j.clay.2015.10.007

    Article  CAS  Google Scholar 

  19. M.L. Gonçalves, L.D. Dimitrov, M.H. Jordão, M. Wallau, E.A. Urquieta-González, Synthesis of mesoporous ZSM-5 by crystallisation of aged gels in the presence of cetyltrimethylammonium cations. Catal. Today. 133–135, 69–79 (2008). https://doi.org/10.1016/j.cattod.2007.12.108

    Article  CAS  Google Scholar 

  20. D. Prasetyoko, N. Ayunanda, H. Fansuri, D. Hartanto, Z. Ramli, Phase transformation of rice husk ash in the synthesis of ZSM-5 without organic template. ITB J. Sci. 44, 250–262 (2012). https://doi.org/10.5614/itbj.sci.2012.44.3.5

    Article  CAS  Google Scholar 

  21. O. DereOzdemir, S. Piskin, A novel synthesis method of zeolite X from coal fly ash: Alkaline fusion followed by ultrasonic-assisted synthesis method. Waste Biomass Valoriz. 10, 143–154 (2019). https://doi.org/10.1007/s12649-017-0050-7

    Article  CAS  Google Scholar 

  22. M.M.J. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, 5th edn. (Elsevier, Amsterdam, 2007). https://doi.org/10.1016/B978-0-444-53067-7.X5470-7

    Book  Google Scholar 

  23. S. Soltanali, R. Halladj, A. Rashidi, M. Bazmi, Mixed templates application in ZSM-5 nanoparticles synthesis: effect on the size, crystallinity, and surface area. Adv. Powder Technol. 25, 1767–1771 (2014). https://doi.org/10.1016/j.apt.2014.07.004

    Article  CAS  Google Scholar 

  24. M.L. Goncalves, L.D. Dimitrov, M. Wallau, E.A. Urquieta-Gonzalez, Mesoporous ZSM-5 synthesized by simultaneous mesostructuring and crystallization of ZSM-5 nuclei. Stud. Surf. Sci. Catal. 162, 323–330 (2006). https://doi.org/10.1016/S0167-2991(06)80923-7

    Article  CAS  Google Scholar 

  25. T. Xue, L. Chen, Y.M. Wang, M.Y. He, Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template. Microporous Mesoporous Mater. 156, 97–105 (2012). https://doi.org/10.1016/j.micromeso.2012.02.022

    Article  CAS  Google Scholar 

  26. T.H. Dang, B.H. Chen, D.J. Lee, Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol. Bioresour. Technol. 145, 175–181 (2013). https://doi.org/10.1016/j.biortech.2012.12.024

    Article  CAS  Google Scholar 

  27. C. Du, H. Yang, Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. J. Colloid Interface Sci. 369, 216–222 (2012). https://doi.org/10.1016/j.jcis.2011.12.041

    Article  CAS  Google Scholar 

  28. G.T.M. Kadja, V.A. Fabiani, M.H. Aziz, A.T.N. Fajar, A. Prasetyo, V. Suendo, E.P. Ng, R.R. Mukti, The effect of structural properties of natural silica precursors in the mesoporogen-free synthesis of hierarchical ZSM-5 below 100 °C. Adv. Powder Technol. 28, 443–452 (2017). https://doi.org/10.1016/j.apt.2016.10.017

    Article  CAS  Google Scholar 

  29. R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 919, 140–145 (2009). https://doi.org/10.1016/j.molstruc.2008.08.025

    Article  CAS  Google Scholar 

  30. E. Mohiuddin, Y.M. Isa, M.M. Mdleleni, N. Sincadu, D. Key, T. Tshabalala, Synthesis of ZSM-5 from impure and beneficiated Grahamstown kaolin: effect of kaolinite content, crystallisation temperatures and time. Appl. Clay Sci. 119, 213–221 (2016). https://doi.org/10.1016/j.clay.2015.10.008

    Article  CAS  Google Scholar 

  31. A.L. Figueiredo, A.S. Araujo, M. Linares, Á. Peral, R.A. García, D.P. Serrano, V.J. Fernandes, Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeolite prepared by seed-assisted synthesis from an organic-template-free system. J. Anal. Appl. Pyrolysis. 117, 132–140 (2016). https://doi.org/10.1016/j.jaap.2015.12.005

    Article  CAS  Google Scholar 

  32. A.H. Mukaromah, G.T.M. Kadja, R.R. Mukti, I.R. Pratama, M.A. Zulfikar, Buchari: surface-to-volume ratio of synthesis reactor vessel governing low temperature crystallization of ZSM-5. J. Math. Fundam. Sci. 48, 241–251 (2016). https://doi.org/10.5614/j.math.fund.sci.2016.48.3.5

    Article  CAS  Google Scholar 

  33. X. Huang, Z. Wang, Synthesis of zeolite ZSM-5 small particle aggregates by a two-step method in the absence of an organic template. Cuihua Xuebao/Chin. J. Catal. 32, 1702–1711 (2011). https://doi.org/10.1016/S1872-2067(10)60275-6

    Article  CAS  Google Scholar 

  34. N. Qiao, Y. Li, N. Li, X. Zhang, J. Cheng, Z. Hao, High performance Pd catalysts supported on bimodal mesopore silica for the catalytic oxidation of toluene. Chin. J. Catal. 36, 1686–1693 (2015). https://doi.org/10.1016/S1872-2067(15)60924-X

    Article  CAS  Google Scholar 

  35. A. Moragues, C. Guillem, A. Mauri-Aucejo, M. Tortajada, A. Beltrán, D. Beltrán, P. Amorós, Enlarged pore size in nanoparticulated bimodal porous silicas: improving accessibility. Microporous Mesoporous Mater. 221, 150–158 (2015). https://doi.org/10.1016/j.micromeso.2015.09.037

    Article  CAS  Google Scholar 

  36. C. Schlumberger, M. Thommes, Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—a tutorial review. Adv. Mater. Interfaces. (2021). https://doi.org/10.1002/admi.202002181

    Article  Google Scholar 

  37. I. Qoniah, D. Prasetyoko, D. Hartati, Y.L. Nikmah, Optimization of hydrothermal temperature and time parameters in the synthesis of hierarchical ZSM-5 from kaolin by taguchi method. Mater. Sci. Forum. 981, 104–111 (2020). https://doi.org/10.4028/www.scientific.net/MSF.981.104

    Article  Google Scholar 

  38. S. Rostami, S.N. Azizi, N. Asemi, Removal of mercury(II) from aqueous solutions via Box-Behnken experimental design by synthesized hierarchical nanoporous ZSM-5 zeolite. J. Iran. Chem. Soc. 15, 1741–1754 (2018). https://doi.org/10.1007/s13738-018-1371-6

    Article  CAS  Google Scholar 

  39. S. Smitha, P. Shajesh, P.R. Aravind, S.R. Kumar, P.K. Pillai, K.G.K. Warrier, Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater. 91, 286–292 (2006). https://doi.org/10.1016/j.micromeso.2005.11.051

    Article  CAS  Google Scholar 

  40. E.B.G. Johnson, S.E. Arshad, Hydrothermally synthesized zeolites based on kaolinite: a review. Appl. Clay Sci. 97–98, 215–221 (2014). https://doi.org/10.1016/j.clay.2014.06.005

    Article  CAS  Google Scholar 

  41. L. Wang, Z. Zhang, C. Yin, Z. Shan, F.S. Xiao, Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater. 131, 58–67 (2010). https://doi.org/10.1016/j.micromeso.2009.12.001

    Article  CAS  Google Scholar 

  42. F. Bérubé, S. Kaliaguine, Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous Mesoporous Mater. 115, 469–479 (2008). https://doi.org/10.1016/j.micromeso.2008.02.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Institut Teknologi Sepuluh Nopember for this work, under the project scheme of the Publication Writing and IPR Incentive Program (PPHKI) 2022, and the Ministry of Research, Technology and Higher Education of the Republic Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

AH designed and planned the study, carried out the experiments and data analysis, and wrote the first draft of the paper. REN carried out the experiments and data analysis. HH reviewed and modified the manuscript. HB reviewed and revised the manuscript. DP supervised the study, acquired funding, and proofread and edited the manuscript. The final manuscript has been read and approved by all writers.

Corresponding author

Correspondence to Didik Prasetyoko.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, A., Nugraha, R.E., Holilah, H. et al. Large intraparticle mesoporosity of hierarchical ZSM-5 synthesized from kaolin using silicalite seed: effect of aging time and temperature. J. Korean Ceram. Soc. 60, 344–356 (2023). https://doi.org/10.1007/s43207-022-00267-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00267-0

Keywords

Navigation