Skip to main content
Log in

Key parameters to improve zeolites hierarchization in direct synthesis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we propose the generation of micro/mesoporous zeolites with ZSM-11 structure by hydrothermal treatment using tetrabutylammonium hydroxide (TBAOH) as micropore structure directing agent and cetyltrimethylammonium bromide (CTAB) as mesotemplate. From many synthesis parameters evaluated (crystallization time, hydrothermal temperature, CTAB content), the type of base employed in the synthesis gel showed notorious influence in the structure, textural properties and morphology of the micro/mesoporous ZSM-11 zeolites. The samples were characterized by different techniques such as X-ray diffraction, nitrogen adsorption and desorption isotherms, Brunauer–Emmett–Teller surface area, scanning electron microscope, ICP-AES and 27Al MAS NMR. The characterization results revealed that the crystallization time, CTAB content and type of base (NaOH, KOH, Ca(OH)2 and NaCO3) played a dominant role in controlling the formation of both microporous and mesoporous structures. The base employed in the synthesis and its concentration showed important effects on the structure and textural properties of the composite materials. It was found that to obtain the best characteristics in terms of crystallinity and textural parameters, NaOH and KOH should be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Corma A 1997 Chem. Rev. 97 2373.

    CAS  Google Scholar 

  2. Davis M E 2002 Nature 417 813

    CAS  Google Scholar 

  3. Noor P, Khanmohammadi M, Roozbehani B, Yaripour F and Garmarudi A B 2018 J. Energy Chem. 27 582

    Google Scholar 

  4. Feliczak-Guzik A 2018 Microporous Mesoporous Mater. 259 33

    CAS  Google Scholar 

  5. Sazama P, Pastvova J, Kaucky D, Moravkova J, Rathousky J, Jakubec I et al 2018 J. Catal. 364 262

    CAS  Google Scholar 

  6. Feng R, Yan X, Hu X, Yan Z, Lin J, Li Z et al 2018 Catal. Commun. 109 1

    CAS  Google Scholar 

  7. Verboekend D, Mitchell S, Milina M, Groen J C and Pérez-Ramírez J 2011 J. Phys. Chem. C 115 14193

    CAS  Google Scholar 

  8. Ahmadpour J and Taghizadeh M 2016 Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 46 1133

  9. Tao Y, Kanoh H and Kaneko K 2003 J. Am. Chem. Soc. 125 6044

    CAS  Google Scholar 

  10. Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S et al 2001 Chem. Mater. 13 4416

    CAS  Google Scholar 

  11. Janssen A H, Schmidt I, Jacobsen C J H, Koster A J and De Jong K P 2003 Microporous Mesoporous Mater. 65 59

    CAS  Google Scholar 

  12. Kustova M Y, Hasselriis P and Christensen C H 2004 Catal. Lett. 96 205

    CAS  Google Scholar 

  13. Zhu H, Liu Z, Wang Y, Kong D, Yuan X and Xie Z 2007 Chem. Mater. 20 1134

    Google Scholar 

  14. Peng P, Sun S Z, Liu Y X, Liu X M, Mintova S and Yan Z F 2018 J. Colloid Interface Sci. 529 283

    CAS  Google Scholar 

  15. Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H and Ryoo R 2006 Nat. Mater. 5 718

    CAS  Google Scholar 

  16. Wang L, Zhang Z, Yin C, Shan Z and Xiao F S 2010 Microporous Mesoporous Mater. 13 58

    CAS  Google Scholar 

  17. Wang H and Pinnavaia T J 2006 Angew. Chemie Int. Ed. 45 7603

    CAS  Google Scholar 

  18. Jiang J, Ji S, Duanmu C, Pan Y, Wu J, Wu M et al 2017 Particuology 33 55

    CAS  Google Scholar 

  19. Zhang M, Liu X and Yan Z 2016 Mater. Lett. 164 543

    CAS  Google Scholar 

  20. Sabarish R and Unnikrishnan G 2017 Powder Technol. 320 412

    CAS  Google Scholar 

  21. Sohrabnezhad S, Jafarzadeh A and Pourahmad A 2018 Mater. Lett212 16

    CAS  Google Scholar 

  22. Bernal Y P, Alvarado J, Juárez R L, Rojas M A M, de Vasconcelos E A, de Azevedo W M et al 2019 Optik 185 429

    CAS  Google Scholar 

  23. Chen H, Wang Y, Meng F, Sun C, Li H, Wang Z et al 2017 Microporous Mesoporous Mater. 244 301

    CAS  Google Scholar 

  24. Xue T, Liu H, Zhang Y, Wu H, Wu P and He M 2017 Microporous Mesoporous Mater. 242 190

    CAS  Google Scholar 

  25. Jiang Y, Wang Y, Zhao W, Huang J, Zhao Y, Yang G et al 2016 J. Taiwan. Inst. Chem. Eng. 61 234

    CAS  Google Scholar 

  26. Chen H L, Ding J and Wang Y M 2014 New J. Chem. 38 308

    CAS  Google Scholar 

  27. Chu P 1973 U.S. Patent No. 3,709,979, Washington, DC: U.S., Patent and Trademark Office

  28. Sing K S 1985 Pure Appl. Chem57 603

    CAS  Google Scholar 

  29. Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J et al 2015 Pure Appl. Chem. 87 1051

    CAS  Google Scholar 

  30. Klinowski J 1984 Prog. Nucl. Magn. Reson. Spectrosc. 16 237

    CAS  Google Scholar 

  31. Jiao J, Altwasser S, Wang W, Weitkamp J and Hunger M 2004 J. Phys. Chem. B 10 14305

    Google Scholar 

  32. Yu D K, Fu M L, Yuan Y H, Song Y B, Chen J Y and Fang Y W 2016 J. Fuel. Chem. Technol. 44 1363

    CAS  Google Scholar 

  33. Mintova S, Valtchev V and Kanev I 1993 Zeolites 13 102

    CAS  Google Scholar 

  34. Xu D, Feng J and Che S 2014 Dalton Trans. 43 3612

    CAS  Google Scholar 

  35. Leofanti G, Padovan M, Tozzola G and Venturelli B 1998 Catal. Today 41 207

    CAS  Google Scholar 

  36. Do M H, Wang T, Cheng D G, Chen F, Zhan X, Rioux R M et al 2014 Small 10 4249

  37. Burton A W and Zones S I 2007 Stud. Surf. Sci. Catal. 168 137

    CAS  Google Scholar 

  38. Dewaele N, Bodart P, Gabelica Z and Nagy J B 1985 Stud. Surf. Sci. Catal. 24 119

    CAS  Google Scholar 

  39. Juan R, Hernández S, Andrés J M and Ruiz C 2007 Fuel 86 1811

    CAS  Google Scholar 

  40. Garcia G, Cabrera S, Hedlund J and Mouzon J 2018 J. Cryst. Growth 489 36

    CAS  Google Scholar 

  41. Groen J C, Moulijn J A and Pérez-Ramírez J 2007 Ind. Eng. Chem. Res. 46 4193

    CAS  Google Scholar 

  42. Visser J H M 2018 Cement. Conc. Res. 105 18

    CAS  Google Scholar 

  43. Wijnen P W J G, Beelen T P M, De Haan J W, Van De Ven L J M and Van Santen R A 1990 Colloids Surf. 45 255

    CAS  Google Scholar 

  44. Emeis C A 1993 J. Catal. 141 347

    CAS  Google Scholar 

  45. Serrano D P, Escola J M and Pizarro P 2013 Chem. Soc. Rev. 42 4004

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Ministerio de Ciencia y Tecnología de Córdoba (PIOdo 2018), Universidad Tecnológica Nacional (PID UTN 6562) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Bonetto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonetto, L., Pierella, L.B. & Saux, C. Key parameters to improve zeolites hierarchization in direct synthesis. Bull Mater Sci 43, 288 (2020). https://doi.org/10.1007/s12034-020-02254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02254-9

Keywords

Navigation