Skip to main content

Advertisement

Log in

Hexagonal boron nitride-based composites: an overview of processing approaches and mechanical properties

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (h-BN)-based composites have been gaining prominence due to their versatile and significantly improved properties. For example they have good strength, better thermal conductivity, excellent resistance to thermal shocks and high temperatures, molten metal erosion resistance, ablation resistance, excellent machinability, good lubricating and chemical inertness. Owing to its excellent comprehensive properties, h-BN has significant potential applications in the fields of electronics, machinery, aerospace, nuclear energy, and metallurgy. Current article, first tries to critically review the literature, mainly published in the last decade, exploring the peculiar crystal structure and enhanced properties of h-BN and then various h-BN-based ceramics and its composites with oxides, nitrides, carbides, metals, and complex ceramics have been discussed based on their fabrication methods, mechanical properties, and the resultant applications. As per the reviewed results, hot pressing results in enhanced mechanical properties such as fracture toughness and flexural strength owing to the incorporation of BN by in situ reaction, which prevents BN agglomeration and reduces the size and quantity of defects. In contrast, the pressureless sintering method is reported to cause poor mechanical properties as compared to other fabrication methods of h-BN ceramics due to large porosity and poor bonding between h-BN grains caused by the forming of card room structure. Consequently, the green body's shrinkage is obstructed, and the expansion is occurred during the sintering process. All these aspects have been discussed in detail and they are the part of this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Song et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/NL1022139

    Article  CAS  Google Scholar 

  2. X. Li et al., Exfoliation of hexagonal boron nitride by molten hydroxides. Adv. Mater. 25(15), 2200–2204 (2013). https://doi.org/10.1002/ADMA.201204031

    Article  CAS  Google Scholar 

  3. Y. Meng et al., The formation of sp3 bonding in compressed BN. Nat. Mater. 3(2), 111–114 (2004). https://doi.org/10.1038/nmat1060

    Article  CAS  Google Scholar 

  4. S. Dai et al., Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science (80-) 343(6175), 1125–1129 (2014). https://doi.org/10.1126/SCIENCE.1246833

    Article  CAS  Google Scholar 

  5. L. Ci et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010). https://doi.org/10.1038/nmat2711

    Article  CAS  Google Scholar 

  6. X. Zhang, J. Chen, J. Zhang, D. Wan, Y. Zhou, High-temperature mechanical and thermal properties of h-BN/30 vol%Y2SiO5 composite. Ceram. Int. 41(9), 10891–10896 (2015). https://doi.org/10.1016/j.ceramint.2015.05.030

    Article  CAS  Google Scholar 

  7. A. Lipp, K.A. Schwetz, K. Hunold, Hexagonal boron nitride: fabrication, properties and applications. J. Eur. Ceram. Soc. 5(1), 3–9 (1989). https://doi.org/10.1016/0955-2219(89)90003-4

    Article  CAS  Google Scholar 

  8. X. Duan et al., Review on the properties of hexagonal boron nitride matrix composite ceramics. J. Eur. Ceram. Soc. 36(15), 3725–3737 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.007

    Article  CAS  Google Scholar 

  9. Y. Matsuo, S. Kumagai, K. Yasuda, Mechanical properties of carbon fiber-reinforced hBN matrix composites at elevated temperature. Key Eng. Mater. 164–165, 137–140 (1999). https://doi.org/10.4028/www.scientific.net/kem.164-165.137

    Article  CAS  Google Scholar 

  10. Y. Li, G. Qiao, Z. Jin, Machinable Al2O3/BN composite ceramics with strong mechanical properties. Mater. Res. Bull. 37(8), 1401–1409 (2002). https://doi.org/10.1016/S0025-5408(02)00786-9

    Article  CAS  Google Scholar 

  11. J. Eichler, C. Lesniak, Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28(5), 1105–1109 (2008). https://doi.org/10.1016/J.JEURCERAMSOC.2007.09.005

    Article  CAS  Google Scholar 

  12. Y. Li et al., High electrical resistivity of pressureless sintered in situ SiC–BN composites. Scr. Mater. 69(10), 740–743 (2013). https://doi.org/10.1016/J.SCRIPTAMAT.2013.08.016

    Article  CAS  Google Scholar 

  13. H.P.R. Frederikse, A.H. Kahn, A.L. Dragoo, W.R. Hosler, Electrical resistivity and microwave transmission of hexagonal boron nitride. J. Am. Ceram. Soc. 68(3), 131–135 (1985). https://doi.org/10.1111/J.1151-2916.1985.TB09650.X

    Article  CAS  Google Scholar 

  14. C. Gautam et al., Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors. RSC Adv. 6(91), 87888–87896 (2016). https://doi.org/10.1039/C6RA18833H

    Article  CAS  Google Scholar 

  15. Y. Li et al., Enhanced electrical resistivity in SiC-BN composites with highly-active BN nanoparticles synthesized via chemical route. J. Eur. Ceram. Soc. 35(5), 1647–1652 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.11.016

    Article  CAS  Google Scholar 

  16. W. Sinclair, H. Simmons, Microstructure and thermal shock behaviour of BN composites. J. Mater. Sci. Lett. 6, 627–629 (1987). https://doi.org/10.1007/BF01770905

  17. D. Jia, L. Zhou, Z. Yang, X. Duan, Y. Zhou, Effect of preforming process and starting fused SiO2 particle size on microstructure and mechanical properties of pressurelessly sintered BNp/SiO2 ceramic composites. J. Am. Ceram. Soc. 94(10), 3552–3560 (2011). https://doi.org/10.1111/J.1551-2916.2011.04540.X

    Article  CAS  Google Scholar 

  18. D. Cai et al., Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics. J. Am. Ceram. Soc. 100, 2669–2678 (2017). https://doi.org/10.1111/jace.14795

    Article  CAS  Google Scholar 

  19. F. Cao, Y. Ding, L. Chen, C. Chen, Z. Fang, Fabrication and characterization of boron nitride bulk foam from borazine. Mater. Des. 54, 610–615 (2014). https://doi.org/10.1016/J.MATDES.2013.08.089

    Article  Google Scholar 

  20. Z. Tian, Y. Yang, Y. Wang, H. Wu, W. Liu, S. Wu, Fabrication and properties of a high porosity h-BN–SiO2 ceramics fabricated by stereolithography-based 3D printing. Mater. Lett. 236, 144–147 (2019). https://doi.org/10.1016/j.matlet.2018.10.058

    Article  CAS  Google Scholar 

  21. W.W. Wu, M. Estili, T. Nishimura, G.J. Zhang, Y. Sakka, Machinable ZrB2-SiC-BN composites fabricated by reactive spark plasma sintering. Mater. Sci. Eng. A 582, 41–46 (2013). https://doi.org/10.1016/j.msea.2013.05.079

    Article  CAS  Google Scholar 

  22. Q. Tong, Y. Zhou, J. Zhang, J. Wang, M. Li, Z. Li, Preparation and properties of machinable Si2N2O/BN composites. Int. J. Appl. Ceram. Technol. 5(3), 295–304 (2008). https://doi.org/10.1111/J.1744-7402.2008.02197.X

    Article  CAS  Google Scholar 

  23. L.R. Vishnyakov, A.V. Maznaya, L.N. Pereselentseva, B.N. Sinaiskii, Structure and high-temperature strength of composite materials based on boron nitride. Powder Metall. Met. Ceram. 45(5), 239–243 (2006). https://doi.org/10.1007/S11106-006-0070-5

    Article  CAS  Google Scholar 

  24. S.Y. Beck, M.W. Cho, W.S. Cho, Mechanical properties and end-milling characteristic of AIN-hBN based machinable ceramics. J. Korean Ceram. Soc. 45(1), 75–81 (2008). https://doi.org/10.4191/KCERS.2008.45.1.075

    Article  CAS  Google Scholar 

  25. Z. Chen, H. Li, Q. Fu, X. Qiang, Tribological behaviors of SiC/h-BN composite coating at elevated temperatures. Tribol. Int. 56, 58–65 (2012). https://doi.org/10.1016/J.TRIBOINT.2012.06.026

    Article  CAS  Google Scholar 

  26. W.S. Cho, M.W. Cho, J.H. Lee, Z.A. Munir, Effects of h-BN additive on the microstructure and mechanical properties of AlN-based machinable ceramics. Mater. Sci. Eng. A 418(1–2), 61–67 (2006). https://doi.org/10.1016/J.MSEA.2005.11.033

    Article  Google Scholar 

  27. R. Haubner, M. Wilhelm, R. Weissenbacher, B. Lux, Boron nitrides — properties, synthesis and applications (Springer, Berlin Heidelberg, 2002), pp.1–45

    Google Scholar 

  28. K.K. Kandi, G. Punugupati, P. Madhukar, C.S.P. Rao, Effect of boron nitride (BN) on mechanical and dielectric properties of fused silica ceramic composites. J. Korean Ceram. Soc. (2022). https://doi.org/10.1007/S43207-021-00184-8/TABLES/7

    Article  Google Scholar 

  29. G. Wen, G.L. Wu, T.Q. Lei, Y. Zhou, Z.X. Guo, Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. J. Eur. Ceram. Soc. 20(12), 1923–1928 (2000). https://doi.org/10.1016/S0955-2219(00)00107-2

    Article  CAS  Google Scholar 

  30. Q. Li et al., Effects of AlN on the densification and mechanical properties of pressureless-sintered SiC ceramics. Prog. Nat. Sci. Mater. Int. 26(1), 90–96 (2016). https://doi.org/10.1016/j.pnsc.2016.01.012

    Article  CAS  Google Scholar 

  31. J. Eichler, K. Uibel, C. Lesniak, Boron nitride (BN) and boron nitride composites for applications under extreme conditions. Adv. Sci. Technol. 65, 61–69 (2010). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AST.65.61

    Article  CAS  Google Scholar 

  32. B. Chen, Q. Bi, J. Yang, Y. Xia, J. Hao, Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 41(12), 1145–1152 (2008). https://doi.org/10.1016/J.TRIBOINT.2008.02.014

    Article  CAS  Google Scholar 

  33. S. Mahathanabodee, T. Palathai, S. Raadnui, R. Tongsri, N. Sombatsompop, Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites. Mater. Des. 46, 588–597 (2013). https://doi.org/10.1016/j.matdes.2012.11.038

    Article  CAS  Google Scholar 

  34. D. Cai et al., A novel BN-MAS system composite ceramics with greatly improved mechanical properties prepared by low temperature hot-pressing. Mater. Sci. Eng. A 633(2), 194–199 (2015). https://doi.org/10.1016/j.msea.2015.03.030

    Article  CAS  Google Scholar 

  35. X. Zhang, J. Chen, X. Li, J. Zhang, D. Wan, Y. Zhou, Microstructure and mechanical properties of h-BN/Y2SiO5 composites. Ceram. Int. 41(1), 1279–1283 (2015). https://doi.org/10.1016/j.ceramint.2014.09.058

    Article  CAS  Google Scholar 

  36. D. Cai et al., Inhibiting crystallization mechanism of h-BN on α-cordierite in BN-MAS composites. J. Eur. Ceram. Soc. 36(3), 905–909 (2016). https://doi.org/10.1016/J.JEURCERAMSOC.2015.10.007

    Article  CAS  Google Scholar 

  37. D. Cai et al., Influence of sintering pressure on the crystallization and mechanical properties of BN-MAS composite ceramics. J. Mater. Sci. 51(5), 2292–2298 (2016). https://doi.org/10.1007/s10853-015-9531-x

    Article  CAS  Google Scholar 

  38. Z. Tian et al., Microstructure and erosion resistance of in-situ SiAlON reinforced BN-SiO2 composite ceramics (Springer, 2016)

    Book  Google Scholar 

  39. T. Kusunose, T. Sekino, Thermal conductivity of hot-pressed hexagonal boron nitride. Scr. Mater. 124, 138–141 (2016). https://doi.org/10.1016/J.SCRIPTAMAT.2016.07.011

    Article  CAS  Google Scholar 

  40. Z. Zhang, L. Teng, W. Li, Mechanical properties and microstructures of hot-pressed MgAlON–BN composites. J. Eur. Ceram. Soc. 27(1), 319–326 (2007). https://doi.org/10.1016/J.JEURCERAMSOC.2006.04.184

    Article  CAS  Google Scholar 

  41. L. Chen, Y. Wang, H. Shen, J. Rao, Y. Zhou, Effect of SiC content on mechanical properties and thermal shock resistance of BN-ZrO2-SiC composites. Mater. Sci. Eng. A 590, 346–351 (2014). https://doi.org/10.1016/j.msea.2013.10.054

    Article  CAS  Google Scholar 

  42. Qu. Qin Mingli, D.B. Xuanhui, Xu. Zhengzhou, G. Shibai, Preparation of high density AlN-BN composite ceramics by pressureless sintering. J. Inorg. Mater. 20, 245–250 (2005). https://doi.org/10.3321/J.ISSN:1000-324X.2005.01.040

    Article  Google Scholar 

  43. T.B. Wang, C.C. Jin, J. Yang, C.F. Hu, T. Qiu, Physical and mechanical properties of hexagonal boron nitride ceramic fabricated by pressureless sintering without additive. Adv. Appl. Ceram. 114(5), 273–276 (2015). https://doi.org/10.1179/1743676114Y.0000000226

    Article  CAS  Google Scholar 

  44. X. Duan, D. Jia, Z. Wu, Z. Tian, Z. Yang, Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics. Scr. Mater. 68(2), 104–107 (2013). https://doi.org/10.1016/j.scriptamat.2012.09.012

    Article  CAS  Google Scholar 

  45. T. Jiang, Z. Jin, J. Yang, G. Qiao, Investigation on the preparation and machinability of the B4C/BN nanocomposites by hot-pressing process. J. Mater. Process. Technol. 209(1), 561–571 (2009). https://doi.org/10.1016/J.JMATPROTEC.2008.02.026

    Article  CAS  Google Scholar 

  46. L. Fa, Z. Dongmei, S. Xiaolei, Z. Wancheng, Properties of hot-pressed of SiC/Si3N4 nanocomposites. Mater. Sci. Eng. A 458(1–2), 7–10 (2007). https://doi.org/10.1016/J.MSEA.2007.01.126

    Article  Google Scholar 

  47. K.A. Khor, L.G. Yu, S.H. Chan, X.J. Chen, Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). J. Eur. Ceram. Soc. 23(11), 1855–1863 (2003). https://doi.org/10.1016/S0955-2219(02)00421-1

    Article  CAS  Google Scholar 

  48. M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287(2), 183–188 (2000). https://doi.org/10.1016/S0921-5093(00)00773-5

    Article  Google Scholar 

  49. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006). https://doi.org/10.1007/S10853-006-6555-2

    Article  CAS  Google Scholar 

  50. S.Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Eur. Ceram. Soc. 29(6), 995–1011 (2009). https://doi.org/10.1016/J.JEURCERAMSOC.2008.11.008

    Article  CAS  Google Scholar 

  51. A.S. Helle, K.E. Easterling, M.F. Ashby, Hot-isostatic pressing diagrams: new developments. Acta Metall. 33(12), 2163–2174 (1985). https://doi.org/10.1016/0001-6160(85)90177-4

    Article  CAS  Google Scholar 

  52. F. Chen et al., Hot isostatic pressing of transparent AlON ceramics with Y2O3/La2O3 additives. J. Alloys Compd. 650, 753–757 (2015). https://doi.org/10.1016/J.JALLCOM.2015.08.028

    Article  CAS  Google Scholar 

  53. N.N. Long, J.Q. Bi, W.L. Wang, M. Du, Y.J. Bai, Mechanical properties and microstructure of porous BN-SiO 2-Si 3N 4 composite ceramics. Ceram. Int. 38(3), 2381–2387 (2012). https://doi.org/10.1016/j.ceramint.2011.11.003

    Article  CAS  Google Scholar 

  54. H.M. Lee, S.J. Lee, S. Baek, D.K. Kim, Flexural strength and dielectric properties of in-situ Si3N4-SiO2-BN composite ceramics. J. Korean Ceram. Soc. 51(5), 386–391 (2014). https://doi.org/10.4191/KCERS.2014.51.5.386

    Article  CAS  Google Scholar 

  55. C.-Y. Chu, J.P. Singh, J.L. Routbort, High-temperature failure mechanisms of hot-pressed Si3N4 and Si3N4/Si3N4-whisker-reinforced composites. J. Am. Ceram. Soc. 76(5), 1349–1353 (1993). https://doi.org/10.1111/J.1151-2916.1993.TB03764.X

    Article  CAS  Google Scholar 

  56. T. Kusunose, R.-J. Sung, T. Sekino, S. Sakaguchi, K. Niihara, High-temperature properties of a silicon nitride/boron nitride nanocomposite. J. Mater. Res. 19(5), 1432–1438 (2004). https://doi.org/10.1557/JMR.2004.0192

    Article  CAS  Google Scholar 

  57. B. Qiu et al., Microstructure and room/elevated-temperature mechanical properties of hot-pressed h-BN composite ceramics with La2O3-Al2O3-SiO2 addition. J. Eur. Ceram. Soc. 40(6), 2260–2267 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.013

    Article  CAS  Google Scholar 

  58. D. Mazza, S. Ronchetti, Study on the Al2O3–SiO2–La2O3 ternary system at 1300°C. Mater. Res. Bull. 34(9), 1375–1382 (1999). https://doi.org/10.1016/S0025-5408(99)00142-7

  59. O. Fabrichnaya, M. Zinkevich, F. Aldinger, Thermodynamic assessment of the systems La2O3–Al2O3 and La2O3–Y2O3. Int. J. Mater. Res. 97(11), 1495–1501 (2006). https://doi.org/10.3139/146.101411

    Article  CAS  Google Scholar 

  60. J. Chen et al., Mechanical and thermal properties of h-BN based composite containing dual glass phases at elevated temperatures. J. Eur. Ceram. Soc. 38(15), 4867–4873 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.07.012

    Article  CAS  Google Scholar 

  61. L.N. Rusanova, A.G. Romashin, G.I. Kulikova, O.P. Golubeva, Boron nitride ceramics: problems and development perspectives. Sov. Powder Metall. Met. Ceram. 27, 21–28 (1988). https://doi.org/10.1007/BF00799732

    Article  Google Scholar 

  62. L. Chen, Y. Huang, Y. Wang, H. Shen, J. Rao, Y. Zhou, Effect of ZrO2 content on microstructure, mechanical properties and thermal shock resistance of (ZrB2+3Y-ZrO2)/BN composites. Mater. Sci. Eng. A 573, 106–110 (2013). https://doi.org/10.1016/j.msea.2013.02.063

    Article  CAS  Google Scholar 

  63. J.W. Hutchinson, Crack tip shielding by micro-cracking in brittle solids. Acta Metall. 35(7), 1605–1619 (1987). https://doi.org/10.1016/0001-6160(87)90108-8

    Article  CAS  Google Scholar 

  64. B. Basu, J. Vleugels, O. Van Der Biest, Development of ZrO2–ZrB2 composites. J. Alloys Compd. 334(1–2), 200–204 (2002). https://doi.org/10.1016/S0925-8388(01)01742-X

    Article  CAS  Google Scholar 

  65. P. Hu, Z. Wang, X. Sun, Effect of surface oxidation on thermal shock resistance of ZrB2–SiC–G composite. Int. J. Refract. Met. Hard Mater. 28(2), 280–285 (2010). https://doi.org/10.1016/J.IJRMHM.2009.10.013

    Article  CAS  Google Scholar 

  66. A. Rezaie, W.G. Fahrenholtz, G.E. Hilmas, Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C. J. Eur. Ceram. Soc. 27(6), 2495–2501 (2007). https://doi.org/10.1016/J.JEURCERAMSOC.2006.10.012

    Article  CAS  Google Scholar 

  67. N. Liao, B. Qiu, M. Nath, Y. Li, S. Sang, Effects of nano ZrO2 content on the comprehensive properties of BN-SiC composites. J. Alloys Compd. 813, 152180 (2020). https://doi.org/10.1016/j.jallcom.2019.152180

    Article  CAS  Google Scholar 

  68. L. Chen, Y. Wang, J. Rao, Y. Zhou, Influence of ZrO2 content on the performances of BN-ZrO2-SiC composites for application in the steel industry. Int. J. Appl. Ceram. Technol. 12(1), 184–191 (2015). https://doi.org/10.1111/IJAC.12203

    Article  Google Scholar 

  69. X. Zhang, R. Zhang, G. Chen, W. Han, Microstructure, mechanical properties and thermal shock resistance of hot-pressed ZrO2(3Y)-BN composites. Mater. Sci. Eng. A 497(1–2), 195–199 (2008). https://doi.org/10.1016/J.MSEA.2008.06.038

    Article  Google Scholar 

  70. B. Niu et al., Anisotropies in structure and properties of hot-press sintered h-BN-MAS composite ceramics: effects of raw h-BN particle size. J. Eur. Ceram. Soc. 39(2–3), 539–546 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.08.043

    Article  CAS  Google Scholar 

  71. X. Duan et al., Anisotropic mechanical properties and fracture mechanisms of textured h-BN composite ceramics. Mater. Sci. Eng. A 607, 38–43 (2014). https://doi.org/10.1016/j.msea.2014.03.132

    Article  CAS  Google Scholar 

  72. B. Zhong et al., Microstructure and mechanical properties of ZTA/BN machinable ceramics fabricated by reactive hot pressing. J. Eur. Ceram. Soc. 35(2), 641–649 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.002

    Article  CAS  Google Scholar 

  73. B.F. Qiu et al., Microstructural evolution and mechanical properties of h-BN composite ceramics with Y2O3–AlN addition by liquid-phase sintering. Rare Met. 39(5), 555–561 (2020). https://doi.org/10.1007/s12598-019-01338-8

    Article  CAS  Google Scholar 

  74. B. Yuan, J.X. Liu, G.J. Zhang, Y.M. Kan, P.L. Wang, Silicon nitride/boron nitride ceramic composites fabricated by reactive pressureless sintering. Ceram. Int. 35(6), 2155–2159 (2009). https://doi.org/10.1016/J.CERAMINT.2008.11.021

    Article  CAS  Google Scholar 

  75. S. Dong et al., Research progress in SiC-based ceramic matrix composites. J. Korean Ceram. Soc. 49(4), 295–300 (2012). https://doi.org/10.4191/KCERS.2012.49.4.295

    Article  CAS  Google Scholar 

  76. K. Liu, C. Zhang, B. Li, S. Wang, F. Cao, Effect of pyrolysis temperature on properties of porous Si 3N4-BN composites fabricated via PIP route. J. Mater. Eng. Perform. 22(12), 3684–3688 (2013). https://doi.org/10.1007/S11665-013-0682-0

    Article  CAS  Google Scholar 

  77. P. Zhang, B. Yang, Z. Lu, D. Jia, Effect of AlN and ZrO2 on the microstructure and property of the 2Si-B-3C-N ceramic. Ceram. Int. 44(3), 3406–3411 (2018). https://doi.org/10.1016/j.ceramint.2017.11.134

    Article  CAS  Google Scholar 

  78. N. Pourmohammadie, M. Ghassemi, M. Shahedi, Role of h-BN content on microstructure and mechanical properties of hot- pressed ZrB 2 – SiC composites. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.255

    Article  Google Scholar 

  79. L. Chen, Y. Wang, J.H. Ouyang, X. Duan, Y. Zhou, Low-temperature sintering behavior and mechanical properties of BN-ZrO2-SiC composites. Mater. Sci. Eng. A 681, 50–55 (2017). https://doi.org/10.1016/j.msea.2016.10.115

    Article  CAS  Google Scholar 

  80. R. Malik, Y.W. Kim, K.J. Kim, B.V. Manoj Kumar, Tuning the electrical, thermal, and mechanical properties of SiC-BN composites using sintering additives. J. Asian Ceram. Soc. 8(2), 353–364 (2020). https://doi.org/10.1080/21870764.2020.1743412

    Article  CAS  Google Scholar 

  81. F. Zhai, S. Li, J. Sun, Z. Yi, Microstructure, mechanical properties and thermal shock behavior of h-BN-SiC ceramic composites prepared by spark plasma sintering. Ceram. Int. 43(2), 2413–2417 (2017). https://doi.org/10.1016/j.ceramint.2016.11.030

    Article  CAS  Google Scholar 

  82. V.H. Nguyen et al., Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method. Ceram. Int. 46(16), 25341–25350 (2020). https://doi.org/10.1016/J.CERAMINT.2020.07.001

    Article  CAS  Google Scholar 

  83. L.K. Pillari, V. Umasankar, P. Elamathi, G. Chandrasekar, Synthesis and characterization of nano hexagonal boron nitride powder and evaluating the influence on aluminium alloy matrix. Mater. Today Proc. 3(6), 2018–2026 (2016). https://doi.org/10.1016/J.MATPR.2016.04.104

    Article  Google Scholar 

  84. R. Gostariani, R. Ebrahimi, M.A. Asadabad, M.H. Paydar, Mechanical properties of Al/BN nanocomposites fabricated by planetary ball milling and conventional hot extrusion. Acta Metall. Sin. (English Lett.) 31(3), 245–253 (2018). https://doi.org/10.1007/s40195-017-0640-1

    Article  CAS  Google Scholar 

  85. K.L. Firestein et al., High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Mater. Sci. Eng. A 681, 1–9 (2017). https://doi.org/10.1016/J.MSEA.2016.11.011

    Article  CAS  Google Scholar 

  86. A.E. Steinman et al., Al-based composites reinforced with AlB2, AlN and BN phases: experimental and theoretical studies. Mater. Des. 141, 88–98 (2018). https://doi.org/10.1016/J.MATDES.2017.12.022

    Article  CAS  Google Scholar 

  87. H. Eslami-shahed, K. Nekouee, N. Ehsani, The effects of adding CNTs and GNPs on the microstructure and mechanical properties of hexagonal-boron nitride. Ceram. Int. 46(14), 22005–22014 (2020). https://doi.org/10.1016/j.ceramint.2020.05.176

    Article  CAS  Google Scholar 

  88. J.X. Xue, J.X. Liu, B.H. Xie, G.J. Zhang, Pressure-induced preferential grain growth, texture development and anisotropic properties of hot pressed hexagonal boron nitride ceramics. Scr. Mater. 65(11), 966–969 (2011). https://doi.org/10.1016/j.scriptamat.2011.08.025

    Article  CAS  Google Scholar 

  89. D.-W. Ni, G.-J. Zhang, Y.-M. Kan, Y. Sakka, Textured h-BN ceramics prepared by slip casting. J. Am. Ceram. Soc. 94(5), 1397–1404 (2011). https://doi.org/10.1111/J.1551-2916.2010.04273.X

    Article  CAS  Google Scholar 

  90. X. Duan et al., Influence of hot-press sintering parameters on microstructures and mechanical properties of h-BN ceramics. J. Alloys Compd. 684, 474–480 (2016). https://doi.org/10.1016/j.jallcom.2016.05.153

    Article  CAS  Google Scholar 

  91. J. Chen, J. Chen, H. Zhang, M. Hu, M. Li, Microstructure and mechanical properties of h-BN/Yb4Si2O7N2 composites. J. Adv. Ceram. 7(4), 317–324 (2018). https://doi.org/10.1007/S40145-018-0281-5

    Article  CAS  Google Scholar 

  92. N.C. Acikbas, R. Kumar, F. Kara, H. Mandal, B. Basu, Influence of β-Si3N4 particle size and heat treatment on microstructural evolution of α:β-SiAlON ceramics. J. Eur. Ceram. Soc. 31(4), 629–635 (2011). https://doi.org/10.1016/J.JEURCERAMSOC.2010.10.001

    Article  CAS  Google Scholar 

  93. K.M. Taylor, Hot pressed boron nitride. Ind. Eng. Chem. 47(12), 2506–2509 (2002). https://doi.org/10.1021/IE50552A039

    Article  Google Scholar 

  94. K. A. Schwetz and A. Lipp, “Hexagonal boron nitride. Pt. 1,” Berichte der Dtsch. Keramischen Gesellschaft e.V, vol. 56, no. 1, pp. 1–4, 1979.

  95. Z. Sun, J. Wang, M. Li, Y. Zhou, Mechanical properties and damage tolerance of Y2SiO5. J. Eur. Ceram. Soc. 28(15), 2895–2901 (2008). https://doi.org/10.1016/J.JEURCERAMSOC.2008.04.029

    Article  CAS  Google Scholar 

  96. M. Ehsani, M. Zakeri, M. Razavi, The effect of boron oxide on the physical and mechanical properties of nanostructured boron nitride by spark plasma sintering. J. Alloys Compd. 780, 570–573 (2019). https://doi.org/10.1016/j.jallcom.2018.11.341

    Article  CAS  Google Scholar 

  97. N. Ay, I. Tore, Pressureless sintering of hexagonal boron nitride powders. Mater. Sci. Forum 554, 207–212 (2007). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.554.207

    Article  CAS  Google Scholar 

  98. Y. Sun et al., Mechanical, dielectric and thermal properties of porous boron nitride/silicon oxynitride ceramic composites prepared by pressureless sintering. Ceram. Int. 43(11), 8230–8235 (2017). https://doi.org/10.1016/j.ceramint.2017.03.151

    Article  CAS  Google Scholar 

  99. C. Gautam et al., Synthesis of low-density, carbon-doped, porous hexagonal boron nitride solids. ACS Nano 9(12), 12088–12095 (2015). https://doi.org/10.1021/ACSNANO.5B05847

    Article  CAS  Google Scholar 

  100. Y. Zhou et al., Mechanical properties and plasma erosion resistance of ZrO 2p(3Y)/BN-SiO2 ceramic composites under different sintering temperature. IOP Conf. Ser. Mater. Sci. Eng. 18, 18–22 (2011). https://doi.org/10.1088/1757-899X/18/20/202003

    Article  CAS  Google Scholar 

  101. L. Yucheng, B. Xudong, L. Jun, Z. Yuebing, Research on pressureless sintering of hexagonal boron nitride. Weapon Mater. Sci. Eng. 28, 20–23 (2005). https://doi.org/10.3969/J.ISSN.1004-244X.2005.04.006

    Article  Google Scholar 

  102. M. Ehsani, M. Zakeri, M. Razavi, The effect of temperature on the physical and mechanical properties of nanostructured boron nitride by spark plasma sintering. J. Alloys Compd. 835, 155317 (2020). https://doi.org/10.1016/j.jallcom.2020.155317

    Article  CAS  Google Scholar 

  103. Z.H. Yang, D.C. Jia, X.M. Duan, K.N. Sun, Y. Zhou, Effect of Si/C ratio and their content on the microstructure and properties of Si–B–C–N ceramics prepared by spark plasma sintering techniques. Mater. Sci. Eng. A 528(4–5), 1944–1948 (2011). https://doi.org/10.1016/J.MSEA.2010.11.032

    Article  Google Scholar 

  104. N. Liao, D. Jia, Z. Yang, B. Niu, Y. Zhou, Y. Li, Enhanced mechanical properties, thermal shock resistance and ablation resistance of Si2BC3N ceramics with nano ZrB2 addition. J. Eur. Ceram. Soc. 39(4), 846–859 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.12.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Higher Education Commission (HEC) of Pakistan for providing the financial assistance via its National Research Program for Pakistani Universities (Project No. HEC-NRPU # 10493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ramzan Abdul Karim.

Ethics declarations

Conflict of interest

All the authors declare that there are no conflicts of financial or any other competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Karim, M.R., Khan, M.A., Zaman, A.U. et al. Hexagonal boron nitride-based composites: an overview of processing approaches and mechanical properties. J. Korean Ceram. Soc. 60, 1–23 (2023). https://doi.org/10.1007/s43207-022-00251-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00251-8

Keywords

Navigation