Skip to main content
Log in

A study on mixed cation perovskite-based UVC photodetector with improved performance

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) detectors are used in diverse areas of light detection and image analysis, such as astronomy, medicine, and environmental monitoring. Most of the UVC emitted from the sun is absorbed by ozone and does not reach the earth's surface; as a result, only a weak signal is detected. However, UVC is also produced by artificial sources and can have detrimental effects on health and materials. To measure UVC accurately it is desirable to develop a semiconductor UVC photodetector that converts an incident optical signal into an electrical signal for analysis. Recently, ultraviolet detectors based on the semiconductor characteristics of perovskite have attracted attention. Perovskite effectively absorbs a wide range of wavelengths and has high charge-carrier mobility. In this study, the (FAPbI3)x(MAPbI3)1-x mixed cation perovskite was used as the light-absorbing layer of a photodetector. The parameters investigated in this study are showing the performance of the photodetector, including the on/off ratio, responsivity, detectivity, and external quantum efficiency. (FAPbI3)0.925(MAPbI3)0.075 film has a high on/off ratio of 877, a responsivity of 5.87 mA/W, a detectivity of 4.15 × 1012, and an external quantum efficiency of 28.7%. These results suggest that perovskite prepared with mixed cations can be a promising candidate for UV C photodetector materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data are available upon reasonable request from the corresponding author.

References

  1. L. Shi, S. Nihtianov, Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 12(7), 2453–2459 (2012)

    Article  CAS  Google Scholar 

  2. J. Yao, G. Yang, 2D material broadband photodetectors. Nanoscale 12(2), 454–476 (2020)

    Article  CAS  Google Scholar 

  3. S.H. Tsai, S. Basu, C.Y. Huang, L.C. Hsu, Y.G. Lin, R.H. Horng, Deep-ultraviolet photodetectors based on epitaxial ZnGa2O4 thin films. Sci. Rep. 8(1), 1–91 (2018)

    Article  Google Scholar 

  4. Y. Zou, Y. Zhang, Y. Hu, H. Gu, Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review. Sensors. 18(7), 2072 (2018). https://doi.org/10.3390/s18072072

    Article  CAS  Google Scholar 

  5. C.C. Gomes, S. Preto, in Intelligent Human Systems Integration, IHSI 2018, Advances in Intelligent Systems and Computing, vol. 722, ed. by W. Karwowski, T. Ahram (Springer, Cham, 2018)

    Google Scholar 

  6. A.J. Dixon, B.F. Dixon, Ultraviolet radiation from welding and possible risk of skin and ocular malignancy. Med. J. Aust. 181(3), 155–157 (2004)

    Article  Google Scholar 

  7. S.F. Leung, K.T. Ho, P.K. Kung, V.K. Hsiao, H.N. Alshareef, Z.L. Wang, J.H. He, A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018)

    Article  Google Scholar 

  8. Z.G. Ju, C.X. Shan, D.Y. Jiang, J.Y. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, X.W. Fan, MgxZn1−xO-based photodetectors covering the whole solar-blind spectrum range. Appl. Phys. Lett. 93(17), 173505 (2008)

    Article  Google Scholar 

  9. Y. Dkhissi, F. Huang, S. Rubanov, M. Xiao, U. Bach, L. Spiccia, R.A. Caruso, Y.B. Cheng, Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J. Power Sources 278, 325–331 (2015)

    Article  CAS  Google Scholar 

  10. A.A. Petrov, N.A. Belich, A.Y. Grishko, N.M. Stepanov, S.G. Dorofeev, E.G. Maksimov, A.V. Shevelkov, S.M. Zakeeruddin, M. Graetzel, A.B. Tarasov, E.A. Goodilin, A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts. Mater. Horiz. 4(4), 625–632 (2017)

    Article  CAS  Google Scholar 

  11. Y. Li, Z.F. Shi, X.J. Li, C.X. Shan, Photodetectors based on inorganic halide perovskites: materials and devices. Chin. Phys. B 28(1), 017803 (2019)

    Article  CAS  Google Scholar 

  12. X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 24(46), 7373–7380 (2014)

    Article  CAS  Google Scholar 

  13. H. Park, S. Kumar, S. Chawla, F. El-Mellouhi, Design principles of large cation incorporation in halide perovskites. Molecules 26(20), 6184 (2021)

    Article  CAS  Google Scholar 

  14. T.M. Koh, K. Thirumal, H.S. Soo, N. Mathews, Multidimensional perovskites: a mixed cation approach towards ambient stable and tunable perovskite photovoltaics. Chemsuschem 9(18), 2541–2558 (2016)

    Article  CAS  Google Scholar 

  15. M. Mateen, Z. Arain, C. Liu, Y. Yang, X. Liu, Y. Ding, P. Shi, Y. Ren, Y. Wu, S. Dai, T. Hayat, A. Alsaedi, High-quality (FA)x(MA)1–xPbI3 for efficient perovskite solar cells via a facile cation-intermixing technique. ACS. Sustain. Chem. Eng. 7(13), 11760–11768 (2019)

    Article  CAS  Google Scholar 

  16. D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.C. Baena, J. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, A. Hagfeldt, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016)

    Article  Google Scholar 

  17. X. Guo, K. Ngai, M. Qin, X. Lu, J. Xu, M. Long, The compatibility of methylammonium and formamidinium in mixed cation perovskite: the optoelectronic and stability properties. Nanotechnology 32, 075406 (2020)

    Article  Google Scholar 

  18. W.G. Li, H.S. Rao, H.S.B.X. Chen, X.D. Wang, D.B. Kuang, A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem. A 5(36), 19431–19438 (2017)

    Article  CAS  Google Scholar 

  19. D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, Perovskite-based solar cells: materials, methods, and future perspectives. J. Nanomater. 2018, 8148072 (2018)

    Article  Google Scholar 

  20. S. Tang, X. Xiao, J. Hu, B. Gao, H. Chen, Z. Zuo, Q. Qi, Z. Peng, J. Wen, D. Zou, Mechanochemical synthesis of pure phase mixed-cation/anion (FAPbI3)x(MAPbBr3)1–x hybrid perovskite materials: compositional engineering and photovoltaic performance. RSC. Adv. 11(11), 5874–5884 (2021). https://doi.org/10.1039/d0ra10751d

    Article  CAS  Google Scholar 

  21. S. Yu, H. Liu, S. Wang, H. Zhu, X. Dong, X. Li, Hydrazinium cation mixed FAPbI3-based perovskite with 1D/3D hybrid dimension structure for efficient and stable solar cells. Chem. Eng. J. 403, 125724 (2021)

    Article  CAS  Google Scholar 

  22. D. Shan, G. Tong, Y. Cao, M. Tang, J. Xu, L. Yu, K. Chen, The effect of decomposed PbI2 on microscopic mechanisms of scattering in CH3NH3PbI3 films. Nanoscale Res. Lett. 14(1), 1–6 (2019)

    Article  CAS  Google Scholar 

  23. X. Li, J. Yang, Q. Jiang, W. Chu, D. Zhang, Z. Zhou, Y. Ren, J. Xin, Enhanced photovoltaic performance and stability in mixed-cation perovskite solar cells via compositional modulation. Electrochim. Acta. 247, 460–467 (2017)

    Article  CAS  Google Scholar 

  24. L. Atourki, E. Vega, B. Marí, M. Mollar, H.A. Ahsaine, K. Bouabid, A. Ihlal, Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−xBrx (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 2016(371), 112–117 (2016)

    Article  Google Scholar 

  25. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Gratzel, F.D. Angelis De Angelis, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014)

    Article  CAS  Google Scholar 

  26. S. Koizumi, H. Umezawa, J. Pernot, M. Suzuki, Power Electronics Device Applications of Diamond Semiconductors (Woodhead Publishing, Cambridge, 2018)

    Google Scholar 

  27. I. Yonenaga, Carrier mobility and resistivity of n-and p-type six Ge1-x (0.93 <x <0.96) single crystals. Jpn. J. Appl. Phys. 45(4), 2678 (2006)

    Article  CAS  Google Scholar 

  28. A. Bercegol, D. Ory, D. Suchet, S. Cacovich, O. Fournier, J. Rousset, L. Lombez, Quantitative optical assessment of photonic and electronic properties in halide perovskite. Nat. Commun. 10(1), 1–8 (2019)

    Article  CAS  Google Scholar 

  29. M. Myronov, Molecular Beam Epitaxy (Elsevier, Amsterdam, 2018), pp.37–54

    Book  Google Scholar 

  30. G. Hodes, P.V. Kamat, Understanding the implication of carrier diffusion length in photovoltaic cells. J. Phys. Chem. Lett. 6(20), 4090–4092 (2015)

    Article  CAS  Google Scholar 

  31. S.G. Shin, C.W. Bark, H.W. Choi, Study on performance improvements in perovskite-based ultraviolet sensors prepared using toluene antisolvent and CH3NH3Cl3. Nanomaterials 11(4), 1000 (2021)

    Article  CAS  Google Scholar 

  32. J.H. Chen, Q. Jing, F. Xu, Y.Q. Lu, High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr3–graphene hybrid structure. Optica 4(8), 835–838 (2017)

    Article  CAS  Google Scholar 

  33. T.M.H. Nguyen, S.K. Lee, S.M. Kim, C.W. Bark, Solution-processed and self-powered photodetector in vertical architecture using mixed-halide perovskite for highly sensitive UVC detection. J. Phys. Chem. Lett. A. 9(2), 1269–1276 (2021)

    CAS  Google Scholar 

  34. T.M.H. Nguyen, S.K. Lee, S.M. Kim, C.W. Bark, Practical demonstration of deep-ultraviolet detection with wearable and self-powered halide perovskite-based photodetector. ACS Appl. Mater. Interfaces 13(48), 57609–57618 (2021)

    Article  CAS  Google Scholar 

  35. P.F. Fettweis, J. Verplancke, R. Venkataraman, B.M. Young, H. Schwenn, In Handbook of Radioactivity Analysis, 2003, pp. 309–323. https://doi.org/10.1088/0026-1394/44/4/S09

  36. M.D. Laurentis, A. Irace, Optical measurement techniques of recombination lifetime based on the free carriers absorption effect. J. Phys. C 2014, 291469 (2014). https://doi.org/10.1155/2014/291469

    Article  Google Scholar 

  37. T. Zhang, F. Wang, P. Zhang, Y. Wang, H. Chen, J. Li, J. Wu, L. Chen, Z.D. Chen, S. Li, Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale 11(6), 2871–2877 (2019)

    Article  CAS  Google Scholar 

  38. Z.X. Zhang, C. Li, Y. Lu, X.W. Tong, F.X. Liang, X.Y. Zhao, D. Wu, C. Xie, L.B. Luo, Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 10(18), 5343–5350 (2019)

    Article  CAS  Google Scholar 

  39. M.H. Tran, T. Park, J. Hur, Wide-bandgap CaSnO3 perovskite as an efficient and selective deep-UV absorber for self-powered and high-performance pin photodetector. ACS. Appl. Mater. Interfaces 13(11), 13372–13382 (2021)

    Article  CAS  Google Scholar 

  40. T.C. Wei, D.S. Tsai, P. Ravadgar, J.J. Ke, M.L. Tsai, D.H. Lien, C.Y. Huang, R.H. Horng, J.H. He, See-through Ga2O3 solar-blind photodetectors for use in harsh environments. IEEE. J. Sel. Top. Quantum. Electron. 20(6), 112–117 (2014)

    Article  Google Scholar 

  41. Q. Zhang, J. Jie, S. Diao, Z. Shao, Q. Zhang, L. Wang, W. Deng, W. Hu, H. Xia, X. Yuan, S.T. Lee, Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 9(2), 1561–1570 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Capacity Enhancement Project through the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2019R1A6C1010016). This work was supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean Government (MOTIE) (P0012451, The Competency Development Program for Industry Specialist).

Funding

The Author has received research support from the Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, GIC; validation GIC and HWC; writing—original draft preparation, GIC; writing—review and editing, GIC and HWC; supervision, HWC.

Corresponding author

Correspondence to Hyung Wook Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The author grants the publisher consent to publish.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G.I., Choi, H.W. A study on mixed cation perovskite-based UVC photodetector with improved performance. J. Korean Ceram. Soc. 60, 90–98 (2023). https://doi.org/10.1007/s43207-022-00247-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00247-4

Keywords

Navigation