Skip to main content

Solar- and Visible-Blind AlGaN Photodetectors

  • Chapter
  • First Online:
III-Nitride Ultraviolet Emitters

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 227))

Abstract

This chapter presents an overview on UV photodetectors based on the Al x Ga1−x N material system. After an introduction into the field of UV photodetection and material-related issues, the main physics, the operation principles, and characteristic parameters of the most popular photodetector device types will be briefly addressed including the photoconductor, the Schottky barrier diode, the metal–semiconductor–metal structure, the p-i-n diode, the avalanche detector as well as the phototube and the photomultiplier tube. Further, scientific results on Al x Ga1−x N-based photodetectors are compiled in order to illustrate the potential of the different photodetector device types for a wide range of UV applications. And finally, the state-of-the-art of commercially available photodetectors for UV detection and monitoring is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    VUV: vacuum UV.

  2. 2.

    The abbreviation PD will be used for photodetector and photodiode throughout the text.

  3. 3.

    Hg-lamps deliver the required intensities between 10−4 to 0.1 W cm−2, where UVC-LEDs with an output of 10−4 W cm−2 are commercially available but are still too weak for water disinfection.

  4. 4.

    This (\(\lambda\))-dependence will sometimes be omitted for the sake of clarity.

  5. 5.

    Data of \(\alpha_{\text{opt}}\) was either directly extracted from the literature (tabular: Si, GaAs, GaP [37] or plot-digitized: Si [35], SiC [39], diamond [42], GaAs [38], ZnO [40]) or calculated from the dielectric function (all digitized: diamond [43], AlGaN [41]).

  6. 6.

    A more detailed description of that type of PD will be given below.

  7. 7.

    Data for n and \(\kappa\) in this example are taken from [44] for Pt and have been derived from the dielectric function given in [41] for Al0.5Ga0.5N.

  8. 8.

    A more detailed description of that type of PD will be given below.

  9. 9.

    After (9.10) the responsivity drops by a factor of \(1/\sqrt 2\) at the bandwidth \(f_{\text{co}}\), which corresponds to a decrease in power level of −3 dB (~−1/2). Therefore, \(f_{\text{co}}\) is also called the 3 dB-bandwidth \(f_{{ 3 {\text{dB}}}}\).

  10. 10.

    D and L refer to minority carrier values, e.g., electrons with \(D_{n}\) and \(L_{n}\) in a p-type region of width \(w_{p}\).

  11. 11.

    The time constants \(\tau_{\text{growth}}\) and \(\tau_{\text{decay}}\) describe the corresponding change in signal as either an increase to \((1 - 1/e) \approx 64\,\%\) or a decrease to \(1/e \approx 37\,\%\) of the maximum signal.

  12. 12.

    Electrons are delivered by the ohmic contact.

  13. 13.

    Companies like: Kyosemi Corporation, Hamamatsu Photonics K.K., SANYO Electric Co. Ltd., General Electric Company, Cree Inc., and others.

References

  1. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  Google Scholar 

  2. S. Einfeldt, V. Kirchner, H. Heinke, M. Dießelberg, S. Figge, K. Vogeler, D. Hommel, Strain relaxation in AlGaN under tensile plane stress. J. Appl. Phys. 88(12), 7029–7036 (2000)

    Article  Google Scholar 

  3. M. Asif Khan, R.A. Skogman, J.M. Van Hove, D.T. Olson, J.N. Kuznia, Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition. Appl. Phys. Lett. 60(11), 1366–1368 (1992)

    Google Scholar 

  4. E. Valcheva, T. Paskova, G. Radnoczi, L. Hultman, B. Monemar, H. Amano, and I. Akasaki, Growth-induced defects in AlN/GaN superlattices with different periods. Phys. B: Condens. Matter 340–342(0), 1129–1132 (2003). (Proceedings of the 22nd international conference on defects in semiconductors)

    Google Scholar 

  5. J.P. Zhang, H.M. Wang, M.E. Gaevski, C.Q. Chen, Q. Fareed, J.W. Yang, G. Simin, M.A. Khan, Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl. Phys. Lett. 80(19), 3542–3544 (2002)

    Article  Google Scholar 

  6. K. Nagamatsu, N. Okada, H. Sugimura, H. Tsuzuki, F. Mori, K. Iida, A. Bando, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN. J. Cryst. Growth 310(7–9), 2326–2329 (2008). (The Proceedings of the 15th international conference on crystal growth (ICCG-15) in conjunction with the international conference on vapor growth and epitaxy and the US Biennial workshop on organometallic vapor phase epitaxy)

    Google Scholar 

  7. H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, N. Kamata, Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs. Phys. Status Solidi (C) 6(S2), S356–S359 (2009)

    Google Scholar 

  8. V. Kueller, A. Knauer, C. Reich, A. Mogilatenko, M. Weyers, J. Stellmach, T. Wernicke, M. Kneissl, Z. Yang, C. Chua, N. Johnson, Modulated epitaxial lateral overgrowth of AlN for efficient UV LEDs. IEEE Photonics Technol. Lett. 24, 1603–1605 (2012)

    Article  Google Scholar 

  9. H. Harima, T. Inoue, S. Nakashima, M. Ishida, M. Taneya, Local vibrational modes as a probe of activation process in p-type GaN. Appl. Phys. Lett. 75(10), 1383–1385 (1999)

    Article  Google Scholar 

  10. S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Hole compensation mechanism of p-type GaN films. Jpn. J. Appl. Phys. 31(Part 1, No. 5A), 1258–1266 (1992)

    Google Scholar 

  11. S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Thermal annealing effects on p-type mg-doped GaN films. Jpn. J. Appl. Phys. 31(Part 2, No. 2B), L139–L142 (1992)

    Google Scholar 

  12. H. Obloh, K. Bachem, U. Kaufmann, M. Kunzer, M. Maier, A. Ramakrishnan, P. Schlotter, Self-compensation in mg doped p-type GaN grown by MOCVD. J. Cryst. Growth 195(1–4), 270–273 (1998)

    Article  Google Scholar 

  13. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, P. Schlotter, Nature of the 2.8 eV photoluminescence band in mg doped GaN. Appl. Phys. Lett. 72(11), 1326–1328 (1998)

    Article  Google Scholar 

  14. M.L. Nakarmi, N. Nepal, J.Y. Lin, H.X. Jiang, Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett. 94(9) (2009)

    Google Scholar 

  15. K.B. Nam, M.L. Nakarmi, J. Li, J.Y. Lin, H.X. Jiang, Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 83(5), 878–880 (2003)

    Article  Google Scholar 

  16. M.L. Nakarmi, N. Nepal, C. Ugolini, T.M. Altahtamouni, J.Y. Lin, H.X. Jiang, Correlation between optical and electrical properties of mg-doped AlN epilayers. Appl. Phys. Lett. 89(15) (2006)

    Google Scholar 

  17. Q. Liu, S. Lau, A review of the metal-GaN contact technology. Solid-State Electron. 42(5), 677–691 (1998)

    Article  Google Scholar 

  18. S. Pal, T. Sugino, Fabrication and characterization of metal/GaN contacts. Appl. Surf. Sci. 161(1–2), 263–267 (2000)

    Article  Google Scholar 

  19. V.M. Bermudez, Study of oxygen chemisorption on the GaN(0001)-(1×1) surface. J. Appl. Phys. 80(2), 1190–1200 (1996)

    Article  Google Scholar 

  20. Q.Z. Liu, S.S. Lau, N.R. Perkins, T.F. Kuech, Room temperature epitaxy of Pd films on GaN under conventional vacuum conditions. Appl. Phys. Lett. 69(12), 1722–1724 (1996)

    Google Scholar 

  21. S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, GaN: Processing, defects, and devices. J. Appl. Phys. 86(1), 1–78 (1999)

    Article  Google Scholar 

  22. M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys. 79(10), 7433–7473 (1996)

    Article  Google Scholar 

  23. E. Muñoz, E. Monroy, J.L. Pau, F. Calle, F. Omnès, P. Gibart, III nitrides and UV detection. J. Phys.: Condens. Matter 13(32), 7115 (2001)

    Google Scholar 

  24. M. Razeghi, Short-wavelength solar-blind detectors-status, prospects, and markets. Proc. IEEE 90, 1006–1014 (2002)

    Article  Google Scholar 

  25. M.A. Khan, M. Shatalov, H.P. Maruska, H.M. Wang, E. Kuokstis, III-nitride UV devices. Jpn. J. Appl. Phys. 44(10R), 7191 (2005)

    Article  Google Scholar 

  26. E. Muñoz, (Al,In,Ga)N-based photodetectors. some materials issues. Phys. Status Solidi (b) 244(8), 2859–2877 (2007)

    Google Scholar 

  27. Wide bandgap UV photodetectors: a short review of devices and applications 6473 (2007)

    Google Scholar 

  28. L. Sang, M. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures. Sensors 13(8), 10482–10518 (2013)

    Article  Google Scholar 

  29. R. Bube, Photoconductivity of solids (Wiley, 1960)

    Google Scholar 

  30. H. Tholl, Bauelemente der Halbleiterelektronik: Teil 2 Feldeffekt-Transistoren, Thyristoren und Optoelektronik (Leitfaden der Elektrotechnik) (German Edition), (Vieweg+Teubner Verlag, 1978)

    Google Scholar 

  31. G. Winstel, C. Weyrich, Optoelektronik II: Photodioden (Phototransistoren, Photoleiter und Bildsensoren (Halbleiter-Elektronik) (German Edition), Springer, 1986)

    Book  Google Scholar 

  32. P. Dennis, Photodetectors: an introduction to current technology (Springer, 1986)

    Google Scholar 

  33. J. Geist, Planar silicon photosensors. In: Sensor Technology and Devices (Optoelectronics Library), ed. by L. Ristic (Artech House Publishers, 1994)

    Google Scholar 

  34. K.K. Ng, Complete Guide to Semiconductor Devices (McGraw-Hill Education (ISE Editions), 1995)

    Google Scholar 

  35. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2006)

    Google Scholar 

  36. J.I. Pankove, H.P. Maruska, J.E. Berkeyheiser, Optical absoption of GaN. Appl. Phys. Lett. 17(5), 197–199 (1970)

    Article  Google Scholar 

  37. D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983)

    Article  Google Scholar 

  38. M.D. Sturge, Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962)

    Article  Google Scholar 

  39. S. Zollner, J.G. Chen, E. Duda, T. Wetteroth, S.R. Wilson, J.N. Hilfiker, Dielectric functions of bulk 4 h and 6 h SiC and spectroscopic ellipsometry studies of thin SiC films on Si. J. Appl. Phys. 85(12), 8353–8361 (1999)

    Article  Google Scholar 

  40. V. Srikant, D.R. Clarke, Optical absorption edge of ZnO thin films: the effect of substrate. J. Appl. Phys. 81(9), 6357–6364 (1997)

    Article  Google Scholar 

  41. M. Röppischer, Optische Eigenschaften von Aluminium-Galliumnitrid-Halbleitern (Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, 2011)

    Google Scholar 

  42. H.R. Phillip, E.A. Taft, Kramers-Kronig analysis of reflectance data for diamond. Phys. Rev. 136, A1445–A1448 (1964)

    Google Scholar 

  43. A.D. Papadopoulos, E. Anastassakis, Optical properties of diamond. Phys. Rev. B 43, 5090–5097 (1991)

    Article  Google Scholar 

  44. E. Palik, Handbook of Optical Constants of Solids, Volumes I, II, and III: Subject Index and Contributor Index. Academic Press Handbook Series (Elsevier Science & Technology, 1985)

    Google Scholar 

  45. R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann. Phys. 167(1), 56–82 (1854)

    Google Scholar 

  46. J. Phillips, Kohlrausch relaxation and glass transitions in experiment and in molecular dynamics simulations. J. Non-Cryst. Solids 182(1–2), 155–161 (1995)

    Article  Google Scholar 

  47. M. Cardona, R. Chamberlin, W. Marx, The history of the stretched exponential function. Ann. Phys. 16(12), 842–845 (2007)

    Article  Google Scholar 

  48. M. Brendel, Build-up and decay transient of a GaN MSM photodetector showing persistent photoconductivity (PPC). Unpublished data from Ferdinand-Braun-Institut, Leibniz-Intitut für Höchstfrequenztechnik (FBH)

    Google Scholar 

  49. J.A. Garrido, E. Monroy, I. Izpura, E.M. Noz, Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol. 13(6), 563 (1998)

    Google Scholar 

  50. C.H. Park, D.J. Chadi, Stability of deep donor and acceptor centers in GaN, AlN, and BN. Phys. Rev. B 55, 12995–13001 (1997)

    Article  Google Scholar 

  51. V.V. Ursaki, I.M. Tiginyanu, P.C. Ricci, A. Anedda, S. Hubbard, D. Pavlidis, Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation. J. Appl. Phys. 94(6), 3875–3882 (2003)

    Article  Google Scholar 

  52. O. Katz, V. Garber, B. Meyler, G. Bahir, J. Salzman, Gain mechanism in GaN schottky ultraviolet detectors. Appl. Phys. Lett. 79(10), 1417–1419 (2001)

    Article  Google Scholar 

  53. K.K. Hamamatsu Photonics, Si photodiodes

    Google Scholar 

  54. R. Müller, Rauschen: Zweite, überarbeitete und erweiterte Auflage (Halbleiter-Elektronik) (Volume 15) (German Edition) (Springer, 1989)

    Google Scholar 

  55. E. Rhoderick, R. Williams, Metal-semiconductor contacts, Monographs in electrical and electronic engineering (Clarendon Press, 1988)

    Google Scholar 

  56. R.T. Tung, The physics and chemistry of the schottky barrier height. Appl. Phys. Rev. 1(1) (2014)

    Google Scholar 

  57. K. Böer, Introduction to space charge effects in semiconductors. Springer Series in Solid-State Sciences (Springer, 2009)

    Google Scholar 

  58. S.M. Sze, D.J. Jr Coleman, A. Loya, Current transport in metal-semiconductor-metal (MSM) structures. Solid-State Electron. 14(12), 1209–1218 (1971)

    Article  Google Scholar 

  59. A. Sarto, B. Van Zeghbroeck, Photocurrents in a metal-semiconductor-metal photodetector. IEEE J. Quantum Electron. 33, 2188–2194 (1997)

    Article  Google Scholar 

  60. S. Chou, M.Y. Liu, Nanoscale tera-hertz metal-semiconductor-metal photodetectors. IEEE J. Quantum Electron. 28, 2358–2368 (1992)

    Article  Google Scholar 

  61. Z. Marks, B. Van Zeghbroeck, High-speed nanoscale metal-semiconductor-metal photodetectors with terahertz bandwidth. In: 2010 10th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (2010), pp. 11–12

    Google Scholar 

  62. I.H. Oguzman, E. Bellotti, K.F. Brennan, J. Kolnk, R. Wang, P.P. Ruden, Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN. J. Appl. Phys. 81(12), 7827–7834 (1997)

    Article  Google Scholar 

  63. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, 2007)

    Google Scholar 

  64. W.E. Spicer, The use of photoemission to determine the electronic structure of solids. J. Phys. Colloques 34, C6–19–C6–33 (1973)

    Google Scholar 

  65. W.E. Spicer, Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds. Phys. Rev. 112, 114–122 (1958)

    Article  Google Scholar 

  66. W.E. Spicer, Photoemission and related properties of the alkali-antimonides. J. Appl. Phys. 31(12), 2077–2084 (1960)

    Article  Google Scholar 

  67. C.N. Berglund, W.E. Spicer, Photoemission studies of copper and silver: Theory. Phys. Rev. 136, A1030–A1044 (1964)

    Google Scholar 

  68. J. Scheer, J. van Laar, GaAs-Cs: A new type of photoemitter. Solid State Commun. 3(8), 189–193 (1965)

    Google Scholar 

  69. Y. Sun, R.E. Kirby, T. Maruyama, G.A. Mulhollan, J.C. Bierman, P. Pianetta, The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3. Appl. Phys. Lett. 95(17) (2009)

    Google Scholar 

  70. E. Pertzsch, Responsivity spectra: Comparison between several AlGaN-based photodetectors and SiC as well as GaP photodetectors. Unpublished data from JENOPTIK Polymer Systems GmbH (JOPS)

    Google Scholar 

  71. J.I. Pankove, J.E. Berkeyheiser, Properties of Zn-doped GaN. II. Photoconductivity. J. Appl. Phys. 45(9), 3892–3895 (1974)

    Google Scholar 

  72. H.P. Maruska, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystalline GaN. Appl. Phys. Lett. 15(10), 327–329 (1969)

    Article  Google Scholar 

  73. M.A. Khan, J.N. Kuznia, D.T. Olson, J.M. Van Hove, M. Blasingame, L.F. Reitz, High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl. Phys. Lett. 60(23), 2917–2919 (1992)

    Article  Google Scholar 

  74. P. Lamarre, A. Hairston, S. Tobin, K. Wong, A. Sood, M. Reine, M. Pophristic, R. Birkham, I. Ferguson, R. Singh, C. Eddy, U. Chowdhury, M. Wong, R. Dupuis, P. Kozodoy, E. Tarsa, AlGaN UV focal plane arrays. Phys. Status Solidi (A) 188(1), 289–292 (2001)

    Google Scholar 

  75. F. Binet, J.Y. Duboz, E. Rosencher, F. Scholz, V. Haerle, Mechanisms of recombination in GaN photodetectors. Appl. Phys. Lett. 69(9), 1202–1204 (1996)

    Article  Google Scholar 

  76. E. Monroy, F. Calle, J.A. Garrido, P. Youinou, E. Muñoz, F. Omnès, B. Beaumont, P. Gibart, Si-doped AlxGa1-xN photoconductive detectors. Semicond. Sci. Technol. 14(8), 685 (1999)

    Article  Google Scholar 

  77. D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, M. Razeghi, AlxGa1-xN (0 ≤ x ≤ 1) ultraviolet photodetectors grown on sapphire by metal-organic chemical-vapor deposition. Appl. Phys. Lett. 70(8), 949–951 (1997)

    Article  Google Scholar 

  78. T.D. Moustakas, M. Misra, Origin of the high photoconductive gain in AlGaN films. Proc. SPIE 6766 (2007)

    Google Scholar 

  79. K.S. Stevens, M. Kinniburgh, R. Beresford, Photoconductive ultraviolet sensor using Mg-doped GaN on Si(111). Appl. Phys. Lett. 66(25), 3518–3520 (1995)

    Article  Google Scholar 

  80. P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, M. Razeghi, Kinetics of photoconductivity in n-type GaN photodetector. Appl. Phys. Lett. 67(25), 3792–3794 (1995)

    Article  Google Scholar 

  81. C. Johnson, J.Y. Lin, H.X. Jiang, M.A. Khan, C.J. Sun, Metastability and persistent photoconductivity in Mg-doped p-type GaN. Appl. Phys. Lett. 68(13), 1808–1810 (1996)

    Article  Google Scholar 

  82. H.M. Chen, Y.F. Chen, M.C. Lee, M.S. Feng, Persistent photoconductivity in n-type GaN. J. Appl. Phys. 82(2), 899–901 (1997)

    Article  Google Scholar 

  83. J. Carrano, T. Li, P. Grudowski, C. Eiting, R. Dupuis, J. Campbell, High quantum efficiency metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers. Electron. Lett. 33, 1980–1981 (1997)

    Article  Google Scholar 

  84. J.C. Carrano, T. Li, D.L. Brown, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, J.C. Campbell, Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN. Appl. Phys. Lett. 73(17), 2405–2407 (1998)

    Article  Google Scholar 

  85. B. Yang, D.J.H. Lambert, T. Li, C. Collins, M. Wong, U. Chowdhury, R. Dupuis, J. Campbell, High-performance back-illuminated solar-blind AlGaN metal-semiconductor-metal photodetectors. Electron. Lett. 36, 1866–1867 (2000)

    Article  Google Scholar 

  86. M. Brendel, M. Helbling, A. Knauer, S. Einfeldt, A. Knigge, M. Weyers, Top- and bottom-illumination of solar-blind AlGaN metal-semiconductor-metal photodetectors. Phys. Status Solidi (A) (2015)

    Google Scholar 

  87. F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, J. Zhou, Ultra-low dark current AlGaN-based solar-blind metal-semiconductor-metal photodetectors for high-temperature applications. IEEE Sens. J. 12, 2086–2090 (2012)

    Article  Google Scholar 

  88. J. Li, Z.Y. Fan, R. Dahal, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, 200 nm deep ultraviolet photodetectors based on AlN. Appl. Phys. Lett. 89(21) (2006)

    Google Scholar 

  89. A. Knigge, M. Brendel, F. Brunner, S. Einfeldt, A. Knauer, V. Kueller, M. Weyers, AlGaN photodetectors for the UV-C spectral region on planar and epitaxial laterally overgrown AlN/sapphire templates. Phys. Status Solidi (C) 10(3), 294–297 (2013)

    Google Scholar 

  90. M. Brendel, A. Knigge, F. Brunner, S. Einfeldt, A. Knauer, V. Kueller, U. Zeimer, M. Weyers, Anisotropic responsivity of AlGaN metalsemiconductormetal photodetectors on epitaxial laterally overgrown AlN/sapphire templates. J. Electron. Mater. 43(4), 833–837 (2014)

    Article  Google Scholar 

  91. M. Asif Khan, J.N. Kuznia, D.T. Olson, M. Blasingame, A.R. Bhattarai, Schottky barrier photodetector based on Mg-doped p-type GaN films. Appl. Phys. Lett. 63(18), 2455–2456 (1993)

    Google Scholar 

  92. A.C. Schmitz, A.T. Ping, M.A. Khan, Q. Chen, J.W. Yang, I. Adesida, Schottky barrier properties of various metals on n-type GaN. Semicond. Sci. Technol. 11(10), 1464 (1996)

    Article  Google Scholar 

  93. Q. Chen, J.W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar, M. Asif Khan, D. Kuksenkov, H. Temkin, Schottky barrier detectors on GaN for visible-blind ultraviolet detection. Appl. Phys. Lett. 70(17), 2277–2279 (1997)

    Article  Google Scholar 

  94. T. Hashizume, J. Kotani, H. Hasegawa, Leakage mechanism in GaN and AlGaN schottky interfaces. Appl. Phys. Lett. 84(24), 4884–4886 (2004)

    Article  Google Scholar 

  95. K.Y. Park, B.J. Kwon, Y.-H. Cho, S.A. Lee, J.H. Son, Growth and characteristics of Ni-based schottky-type Al x Ga1-x N ultraviolet photodetectors with AlGaN/GaN superlattices. J. Appl. Phys. 98(12) (2005)

    Google Scholar 

  96. H. Miyake, H. Yasukawa, Y. Kida, K. Ohta, Y. Shibata, A. Motogaito, K. Hiramatsu, Y. Ohuchi, K. Tadatomo, Y. Hamamura, K. Fukui, High performance schottky UV detectors (265–100 nm) using n-Al0.5Ga0.5N on AlN epitaxial layer. Phys. Status Solidi (A) 200(1), 151–154 (2003)

    Google Scholar 

  97. R. Dahal, T.M. Al Tahtamouni, Z.Y. Fan, J.Y. Lin, H.X. Jiang, Hybrid AlN/SiC deep ultraviolet schottky barrier photodetectors. Appl. Phys. Lett. 90(26) (2007)

    Google Scholar 

  98. C.J. Collins, T. Li, A.L. Beck, R.D. Dupuis, J.C. Campbell, J.C. Carrano, M.J. Schurman, I.A. Ferguson, Improved device performance using a semi-transparent p-contact AlGaN/GaN heterojunction positive-intrinsic-negative photodiode. Appl. Phys. Lett. 75(14), 2138–2140 (1999)

    Article  Google Scholar 

  99. C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, I. Akasaki, Solar-blind UV photodetectors based on GaN/AlGaN p-i-n photodiodes. Jpn. J. Appl. Phys. 39(5A), L387 (2000)

    Article  Google Scholar 

  100. T. Li, A.L. Beck, C. Collins, R.D. Dupuis, J.C. Campbell, J.C. Carrano, M.J. Schurman, I.A. Ferguson, Improved ultraviolet quantum efficiency using a semitransparent recessed window AlGaN/GaN heterojunction p-i-n photodiode. Appl. Phys. Lett. 75(16), 2421–2423 (1999)

    Article  Google Scholar 

  101. W. Yang, T. Nohova, S. Krishnankutty, R. Torreano, S. McPherson, H. Marsh, Back-illuminated GaN/AlGaN heterojunction photodiodes with high quantum efficiency and low noise. Appl. Phys. Lett. 73(8), 1086–1088 (1998)

    Article  Google Scholar 

  102. U. Chowdhury, M.M. Wong, C.J. Collins, B. Yang, J.C. Denyszyn, J.C. Campbell, R.D. Dupuis, High-performance solar-blind photodetector using an Al0.6Ga0.4N n-type window layer. J. Cryst. Growth 248(0), 552–555 (2003). (Proceedings of the eleventh international conference on Metalorga nic Vapor Phase Epitaxy)

    Google Scholar 

  103. D.J.H. Lambert, M.M. Wong, U. Chowdhury, C. Collins, T. Li, H.K. Kwon, B.S. Shelton, T.G. Zhu, J.C. Campbell, R.D. Dupuis, Back illuminated AlGaN solar-blind photodetectors. Appl. Phys. Lett. 77(12), 1900–1902 (2000)

    Article  Google Scholar 

  104. E. Cicek, R. McClintock, C.Y. Cho, B. Rahnema, M. Razeghi, Al x Ga1−x N-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89 %. Appl. Phys. Lett. 103(19) (2013)

    Google Scholar 

  105. C.J. Collins, U. Chowdhury, M.M. Wong, B. Yang, A.L. Beck, R.D. Dupuis, J.C. Campbell, Improved solar-blind detectivity using an Al x Ga1-x N heterojunction p-i-n photodiode. Appl. Phys. Lett. 80(20), 3754–3756 (2002)

    Article  Google Scholar 

  106. N. Biyikli, I. Kimukin, O. Aytur, E. Ozbay, Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity. IEEE Photonics Technol. Lett. 16, 1718–1720 (2004)

    Article  Google Scholar 

  107. H. Jiang, T. Egawa, Low-dark-current high-performance AlGaN solar-blind pin photodiodes. Jpn. J. Appl. Phys. 47(3R), 1541 (2008)

    Article  Google Scholar 

  108. A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, I. Akasaki, Demonstration of flame detection in room light background by solar-blind AlGaN pin photodiode. Phys. Status Solidi (A) 188(1), 293–296 (2001)

    Google Scholar 

  109. J. Kuek, D. Pulfrey, B. Nener, J. Dell, G. Parish, U. Mishra, Effects of polarisation on solar-blind AlGaN UV photodiodes. In Proceedings conference on optoelectronic and microelectronic materials and devices, 2000. COMMAD 2000 (2000), pp. 459–462

    Google Scholar 

  110. F. Xie, H. Lu, D. Chen, X. Xiu, H. Zhao, R. Zhang, Y. Zheng, Metal-semiconductor-metal ultraviolet avalanche photodiodes fabricated on bulk GaN substrate. IEEE Electron Device Lett. 32, 1260–1262 (2011)

    Article  Google Scholar 

  111. S.-C. Shen, Y. Zhang, D. Yoo, J.-B. Limb, J.-H. Ryou, P. Yoder, R.D. Dupuis, Performance of deep ultraviolet GaN avalanche photodiodes grown by mocvd. IEEE Photonics Technol. Lett. 19, 1744–1746 (2007)

    Article  Google Scholar 

  112. T. Tut, M. Gokkavas, A. Inal, E. Ozbay, Al x Ga1−x N-based avalanche photodiodes with high reproducible avalanche gain. Appl. Phys. Lett. 90(16) (2007)

    Google Scholar 

  113. R.D. Dupuis, J.-H. Ryou, S.-C. Shen, P.D. Yoder, Y. Zhang, H.J. Kim, S. Choi, Z. Lochner, Growth and fabrication of high-performance GaN-based ultraviolet avalanche photodiodes. J. Cryst. Growth 310(23), 5217–5222 (2008). (The Fourteenth International conference on Metalorganic Vapor Phase Epitax The 14th International conference on Metalorganic Vapor Phase Epitaxy)

    Google Scholar 

  114. J.L. Pau, C. Bayram, R. McClintock, M. Razeghi, D. Silversmith, Back-illuminated separate absorption and multiplication GaN avalanche photodiodes. Appl. Phys. Lett. 92(10) (2008)

    Google Scholar 

  115. Y. Huang, D.J. Chen, H. Lu, K.X. Dong, R. Zhang, Y.D. Zheng, L. Li, Z.H. Li, Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl. Phys. Lett. 101(25) (2012)

    Google Scholar 

  116. R. Mcintyre, On the avalanche initiation probability of avalanche diodes above the breakdown voltage. IEEE Trans. Electron Devices 20, 637–641 (1973)

    Article  Google Scholar 

  117. K.A. McIntosh, R.J. Molnar, L.J. Mahoney, K.M. Molvar, N. Efremow, S. Verghese, Ultraviolet photon counting with GaN avalanche photodiodes. Appl. Phys. Lett. 76(26), 3938–3940 (2000)

    Article  Google Scholar 

  118. R. McClintock, A. Yasan, K. Minder, P. Kung, M. Razeghi, Avalanche multiplication in AlGaN based solar-blind photodetectors. Appl. Phys. Lett. 87(24) (2005)

    Google Scholar 

  119. Z.G. Shao, D.J. Chen, H. Lu, R. Zhang, D.P. Cao, W.J. Luo, Y.D. Zheng, L. Li, Z.H. Li, High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett. 35, 372–374 (2014)

    Article  Google Scholar 

  120. S. Verghese, K.A. McIntosh, R. Molnar, L.J. Mahoney, R. Aggarwal, M. Geis, K. Molvar, E. Duerr, I. Melngailis, GaN avalanche photodiodes operating in linear-gain mode and geiger mode. IEEE Trans. Electron Devices 48, 502–511 (2001)

    Article  Google Scholar 

  121. K.X. Dong, D.J. Chen, H. Lu, B. Liu, P. Han, R. Zhang, Y.D. Zheng, Exploitation of polarization in back-illuminated AlGaN avalanche photodiodes. IEEE Photonics Technol. Lett. 25, 1510–1513 (2013)

    Article  Google Scholar 

  122. M. Eyckeler, W. Mönch, T.U. Kampen, R. Dimitrov, O. Ambacher, M. Stutzmann, Negative electron affinity of cesiated p-GaN(0001) surfaces. J. Vac. Sci. Technol., B 16(4), 2224–2228 (1998)

    Article  Google Scholar 

  123. C.I. Wu, A. Kahn, Electronic states and effective negative electron affinity at cesiated p-GaN surfaces. J. Appl. Phys. 86(6), 3209–3212 (1999)

    Article  Google Scholar 

  124. F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W.E. Spicer, R.F.W. Pease, Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes. J. Vac. Sci. Technol., B 21(4), 1863–1869 (2003)

    Article  Google Scholar 

  125. O. Siegmund, J. Vallerga, J. McPhate, J. Malloy, A. Tremsin, A. Martin, M. Ulmer, B. Wessels, Development of GaN photocathodes for UV detectors. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors Associated Equipment 567(1), 89–92 (2006). (Proceedings of the 4th international conference on new developments in photodetection BEAUNE 2005 fourth international conference on new developments in photodetection)

    Google Scholar 

  126. F. Shahedipour, M. Ulmer, B. Wessels, C. Joseph, T. Nihashi, Efficient GaN photocathodes for low-level ultraviolet signal detection. IEEE J. Quant. Electron. 38, 333–335 (2002)

    Article  Google Scholar 

  127. M.C. Benjamin, C. Wang, R.F. Davis, R.J. Nemanich, Observation of a negative electron affinity for heteroepitaxial AlN on α(6 h)-SiC(0001). Appl. Phys. Lett. 64(24), 3288–3290 (1994)

    Google Scholar 

  128. C. Wu, A. Kahn, Negative electron affinity and electron emission at cesiated GaN and AlN surfaces. Appl. Surf. Sci. 162–163, 250–255 (2000)

    Article  Google Scholar 

  129. S. Uchiyama, Y. Takagi, M. Niigaki, H. Kan, H. Kondoh, GaN-based photocathodes with extremely high quantum efficiency. Appl. Phys. Lett. 86(10) (2005)

    Google Scholar 

  130. J. Brown, J. Matthews, S. Harney, J. Boney, J. Schetzina, J. Benson, K. Dang, T. Nohava, W. Yang, S. Krishnankutty, High-sensitivity visible-blind AlGaN photodiodes and photodiode arrays. MRS Proc. 595, 1 (1999)

    Article  Google Scholar 

  131. J. Brown, J. Matthews, S. Harney, J. Boney, J. Schetzina, J. Benson, K. Dang, T. Nohava, W. Yang, S. Krishnankutty, Visible-blind UV digital camera based on a 32x32 array of GaN/AlGaN p-i-n photodiodes. MRS Internet J. Nitride Semicond. 4 (1999)

    Google Scholar 

  132. Status of AlGaN based focal plane arrays for UV solar blind detection 5964 (2005)

    Google Scholar 

  133. G. Mazzeo, J.-L. Reverchon, J. Duboz, A. Dussaigne, AlGaN-based linear array for UV solar-blind imaging from 240 to 280 nm. IEEE Sens. J. 6, 957–963 (2006)

    Article  Google Scholar 

  134. P.E. Malinowski, J.-Y. Duboz, P. De Moor, J. John, K. Minoglou, P. Srivastava, H. Abdul, M. Patel, H. Osman, F. Semond, E. Frayssinet, J.-F. Hochedez, B. Giordanengo, C. Van Hoof, R. Mertens, Backside illuminated AlGaN-on-Si UV detectors integrated by high density flip-chip bonding. Physica Status Solidi (C) 8(7–8), 2476–2478 (2011)

    Google Scholar 

  135. E. Cicek, R. McClintock, C. Cho, B. Rahnema, M. Razeghi, Al x Ga1-x N-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate. Appl. Phys. Lett. 103(18), 181113 (2013)

    Article  Google Scholar 

  136. K.C. Kim, Y.M. Sung, I.H. Lee, C.R. Lee, M.D. Kim, Y. Park, T.G. Kim, Visible-blind ultraviolet imagers consisting of 8 × 8 AlGaN p-i-n photodiode arrays. J. Vac. Sci. Technol., A 24(3), 641–644 (2006)

    Article  Google Scholar 

  137. J. Long, S. Varadaraajan, J. Matthews, J. Schetzina, UV detectors and focal plane array imagers based on AlGaN p-i-n photodiodes. Opto-Electron. Rev. 10(4), 251–260 (2002)

    Google Scholar 

  138. R. McClintock, K. Mayes, A. Yasan, D. Shiell, P. Kung, M. Razeghi, 320x256 solar-blind focal plane arrays based on Al x Ga1-x N. Appl. Phys. Lett. 86(1) (2005)

    Google Scholar 

  139. First demonstration and performance of AlGaN based focal plane array for deep-UV imaging 7474 (2009)

    Google Scholar 

  140. E. Cicek, Z. Vashaei, E.K.-W. Huang, R. McClintock, M. Razeghi, Al x Ga1-x N-based deep-ultraviolet 320 × 256 focal plane array. Opt. Lett. 37(5), 896–898 (2012)

    Article  Google Scholar 

  141. E. Cicek, R. McClintock, Z. Vashaei, Y. Zhang, S. Gautier, C.Y. Cho, M. Razeghi, Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Appl. Phys. Lett. 102(5) (2013)

    Google Scholar 

  142. E. Michael, N. C. J, III-V direct-bandgap semiconductor optical filter. 11 (1981)

    Google Scholar 

  143. H.M. Manasevit, Epitaxial composite and method of making. 1 (1983)

    Google Scholar 

  144. K.M. ASIF, S.R.G, and S.R.A, UV detector and method for fabricating it. 4 (1986)

    Google Scholar 

  145. K.M. Asif [US], S.R.G [US], S.R.A [US], Tunable cut-off UV detector based on the aluminum gallium nitride material system. 9 (1986)

    Google Scholar 

  146. K.M. Asif [US], S.R. G [US], UV photocathode using negative electron affinity effect in AlxGa1−xN. 10 (1986)

    Google Scholar 

  147. S.W.H [US], Interference filter design using flip-flop optimization. 5 (1987)

    Google Scholar 

  148. H. Kai-Feng [CN], J.J.L [US], M.J.S. L [US], T. Kuochou [US], Quantum well vertical cavity laser. 3 (1991)

    Google Scholar 

  149. I. Toshihide [JP], O. Yasuo [JP], H. Ako [JP], Semiconductor light-emitting diode and method of manufacturing the same. 4 (1991)

    Google Scholar 

  150. L. Sergey [US], X. Ya-Hong [US], Vertical cavity semiconductor laser with lattice-mismatched mirror stack. 4 (1991)

    Google Scholar 

  151. K.P. C [AU], Current injection laser. 9 (1991)

    Google Scholar 

  152. S.J. Hwan, Semiconductor element for detecting ultraviolet rays at constant reliability and manufacturing method thereof. 12 (2004)

    Google Scholar 

  153. N. Katsuhiko, T. Toshiyuki, Ultraviolet ray detector. 5 (2006)

    Google Scholar 

  154. S. Charles [HK], Ultraviolet detector. 12 (2006)

    Google Scholar 

  155. W. Tilman [DE], T. Christoph [DE], L. Stefan [DE], H. Oliver [DE], K. H. Georg [DE], S. Sebastian [DE], S. Stephan [DE], Semiconductor component, electronic component, sensor system and method for producing a semiconductor component. 8 (2002)

    Google Scholar 

  156. S. Mayo [JP], T. Kohsuke [JP], G. Shunsuke [JP], K. Yasube [JP], E. Haruyuki [JP], H. Tatsuo [JP], I. Fukunori [JP], O. Eriko [JP], Photovoltaic ultraviolet sensor. 6 (2007)

    Google Scholar 

  157. K. Satoshi [JP], A. Hiroshi [JP], Nitride semiconductor substrate production method thereof and semiconductor optical device using the same. 2 (2005)

    Google Scholar 

  158. S.R. P [US], S.S. T [US], P.J. W [US], Dielectric passivation for semiconductor devices. 11 (2005)

    Google Scholar 

  159. J.M. Van Hove, J.N. Kuznia, D.T. Olson, M.A. Khan, M.C. Blasingame, High responsivity ultraviolet gallium nitride detector. 12 (1993)

    Google Scholar 

  160. T. Tadao, Semiconductor optical sensor. 6 (2000)

    Google Scholar 

  161. C. Qisheng [US], Schottky barrier detectors for visible-blind ultraviolet detection. 8 (2000)

    Google Scholar 

  162. D.M. Philip [US], E.N. Andrea [US], C. Kanin [US], Homoepitaxial gallium nitride based photodetector and method of producing. 2 (2005)

    Google Scholar 

  163. S. Katsumi [JP], I. Masayuki [JP], Y. Takafumi [JP], Backside-illuminated photodiode array, method for manufacturing same, and semiconductor device. 8 (2005)

    Google Scholar 

  164. H. Hikari, K. Satoshi, A. Hiroshi, A. Isamu, GaN-based compound semiconductor light receiving element. 9 (2005)

    Google Scholar 

  165. O. Ryota, D. Toru, Photoelectric conversion element, and its manufacturing method. 3 (2008)

    Google Scholar 

  166. F. Junichi [JP], O. Daisuke [JP], M. Kikuo [JP], N. Kenichi [JP], O. Keishi [JP], Photodiode, optical communication device, and optical interconnection module. 6 (2008)

    Google Scholar 

  167. K.K. Hamamatsu Photonics, Hamamatsu develops a new, highly sensitive GaN photocathode for UV detection (2010)

    Google Scholar 

  168. K.K. Hamamatsu Photonics, Photocathode technology (2014)

    Google Scholar 

  169. Y.-H. Lai, W.-Y. Cheung, S.-K. Lok, G. K. L. Wong, S.-K. Ho, K.-W. Tam, I.-K. Sou, Rocksalt mgs solar blind ultra-violet detectors. AIP Adv. 2(1) (2012)

    Google Scholar 

  170. S.I. Keong [CN], L.Y. Hoi [CN], L.S. Kin [CN], C.W. Yip [CN], W.G.K. Lun [CN], T.K. Weng [CN], H.S. Kam [CN], Mgs solar-blind UV radiation detector. 12 (2012)

    Google Scholar 

  171. F. Junichi [JP], N. Takahiro [JP]

    Google Scholar 

  172. Jenoptik Polymer Systems GmbH, Data sheet epd-440-0-1.4 (2014)

    Google Scholar 

  173. K.K. Hamamatsu Photonics, Data sheet r759 (2014)

    Google Scholar 

  174. sglux GmbH, Data sheet tw30sx (2014)

    Google Scholar 

  175. J. Sun, F.-J. Liu, H.-Q. Huang, J.-W. Zhao, Z.-F. Hu, X.-Q. Zhang, Y.-S. Wang, Fast response ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by radio-frequency magnetron sputtering. Appl. Surf. Sci. 257(3), 921–924 (2010)

    Article  Google Scholar 

  176. D.K. Wickenden, Z. Huang, D.B. Mott, P.K. Shu, Development of gallium nitride photoconductive detectors. Johns Hopkins APL Technical Digist 18(2) (1997)

    Google Scholar 

  177. ITME - Institute of Electronic Materials Technology Poland, Catalog of 2010 (2010)

    Google Scholar 

  178. IL-Metronic Sensortechnik GmbH, Data sheet UVD 370 (2014)

    Google Scholar 

  179. Jenoptik Polymer Systems GmbH, Prototype data sheet epd-260-1.0 (2014)

    Google Scholar 

  180. Genicom, Data sheet GUVC-T10GD-L (2014)

    Google Scholar 

  181. L. Jian-Fei, H. Ze-Qiang, Z. Wen-Le, J. Hao, Large active area AlGaN solar-blind schottky avalanche photodiodes with high multiplication gain. Chin. Phys. Lett. 30(3), 037803 (2013)

    Article  Google Scholar 

  182. Jenoptik Polymer Systems GmbH, Data sheet epd-270-0-0.3-1 (2014)

    Google Scholar 

  183. IFW Optronics, Data sheet jec 1c (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Brendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brendel, M., Pertzsch, E., Abrosimova, V., Trenkler, T., Weyers, M. (2016). Solar- and Visible-Blind AlGaN Photodetectors. In: Kneissl, M., Rass, J. (eds) III-Nitride Ultraviolet Emitters. Springer Series in Materials Science, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-24100-5_9

Download citation

Publish with us

Policies and ethics