Skip to main content
Log in

Advances in borate- and phosphate-based TL materials for in vivo dosimetry

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Thermoluminescence (TL) materials are well known for a very large number of applications in various fields such as medical research, in vivo dosimetry, environmental dosimetry, personal dosimetry, etc. There are several TL materials available in the market such as fluoride, borate, phosphate, silicate, borosilicate glasses, etc. The TL properties of materials change with the doping of rare-earth and transition impurities in different hosts which are useful for different applications. These doped TL materials can be prepared by different techniques such as, the melt-quenching technique, combustion method, sol–gel method, and others. Radiations such as γ-rays, X-rays, β-rays, photon beam, electron beam, neutron beam, etc., can be used to irradiate these TL materials. In the present state of research, interest is being raised to develop new thermoluminescent materials for various applications in the field of material science and radiation therapy for in vivo dosimetry in view of the rise in the number of cancer patients across the globe. In the last few years, borate and phosphate-based TL dosimeters got more attention in radiation dosimetry. So, this review deals with the recent developments and advancements in borate- and phosphate-based TL materials for in vivo dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Reproduced from ref. [59], Open access under Common Creative Attribution Non-Commercial 4.0 International (CC-BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/)

Fig. 5

(Reproduced from ref. [104], Open access under Common Creative Attribution 4.0 International (CC-BY 4.0) https://creativecommons.org/licenses/by/4.0)

Fig. 6

(Reproduced from ref. [95], open access under Common Creative Attribution 4.0 International (CC-BY 4.0) https://creativecommons.org/licenses/by/4.0)

Similar content being viewed by others

References

  1. A. Shortland, E. Katherine, D. Patrick, K. Susanna, W. Marc, The origins of glasses: the near East or Egypt? Annual meeting of the American Schools of Oriental Research, (San Antonio, 2016)

  2. J.A.J. Gowlett, High definition archaeology: threads through the past (Routledge, 1997)

    Google Scholar 

  3. A. Kanungo, B. Robert, Kopia, India’s first glassmaking site: dating and chemical analysis. J Glass Stud 51, 11–25 (2009)

    Google Scholar 

  4. D.M. Bose, A concise history of science in India (Indian National Science Academy, 1971), p.15. (ISBN 8173716196)

    Google Scholar 

  5. A. Ghosh, An encyclopaedia of Indian archaeology (BRILL, 1990). (ISBN 90-04-09262-5)

    Google Scholar 

  6. C. Braghin, “Introduction” pp. XI-XIV in Braghin, C. (ed) Chinese glass. Archaeological studies on the uses and social contest of glass artefacts from the Warring States to the Northern Song Period (fifth century B.C. to twelfth century A.D.). ISBN 8822251628(2002).

  7. R. Pinder-Wilson, The Islamic lands and China, in Five thousand years of glass. ed. by H. Tait (University of Pennsylvania Press, 1991), p.140

    Google Scholar 

  8. J. P. Toner, Popular culture in ancient Rome. ISBN 0-7456-4310-8. (2009), p. 19

  9. J. Krogh-Moe, The structure of vitreous and liquid boron oxide. J. Non-Cryst. Solids 1(4), 269–284 (1969)

    Article  CAS  Google Scholar 

  10. C. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram. (2012). https://doi.org/10.5402/2012/428497

    Article  Google Scholar 

  11. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. (2016). https://doi.org/10.1007/s10853-015-9537-4

    Article  Google Scholar 

  12. J.E. Shelby, Introduction to glass science and technology (Royal Society of Chemistry, Cambridge, 2015)

    Google Scholar 

  13. N.M. Bobkova, Thermal expansion of binary borate glasses and their structure. Glass Phys. Chem. 29, 501–507 (2003)

    Article  CAS  Google Scholar 

  14. M. Yamane, Glasses for photonics (Cambridge University Press, Port Chester, 2000)

    Book  Google Scholar 

  15. K. Terashima, S. Tamura, S.H. Kim, T. Yoko, Structure and nonlinear optical properties of lanthanide borate glasses. J. Am. Ceram. Soc. 80, 2903–2909 (1997)

    Article  CAS  Google Scholar 

  16. W. Nie, Optical nonlinearity: phenomena, applications, and materials. Adv. Mater. 5, 520–545 (1993)

    Article  CAS  Google Scholar 

  17. O. Deparis, F.P. Mezzapesa, C. Corbari, P.G. Kazansky, K. Sakaguchi, Origin and enhancement of the second-order non-linear optical susceptibility induced in bismuth borate glasses by thermal poling. J. Non-Cryst. Solids 351, 2166–2177 (2005)

    Article  CAS  Google Scholar 

  18. V. Nazabal, E. Fargin, B. Ferreira, G. Le Flem, B. Desbat, T. Buffeteau, M. Couzi, V. Rodriguez, S. Santran, L. Canioni, L. Sarger, Thermally poled new borate glasses for second harmonic generation. J. Non-Cryst. Solids 290, 73–85 (2001)

    Article  CAS  Google Scholar 

  19. R.W. Boyd, G.L. Fischer, Nonlinear optical materials, in Encyclopedia of materials: science and technology. ed. by K.H.J. Buschow et al. (Elsevier, New York, 2001)

    Google Scholar 

  20. R.A. Myers, N. Mukherjee, S.R.J. Brueck, Large second order nonlinearity in poled fused silica. Opt. Lett. 16, 1732–1734 (1991)

    Article  CAS  Google Scholar 

  21. C. Corbari, L.C. Ajitdoss, I.C.S. Carvalho, O. Deparis, F.P. Mezzapesa, P.G. Kazansky, K. Sakaguchi, The problem of achieving high second-order nonlinearities in glasses: the role of electronic conductivity in poling of high index glasses. J. Non- Cryst. Solids 356, 2742–2749 (2010)

    Article  CAS  Google Scholar 

  22. X. Tiefeng, C. Feifei, D. Shixun, N. Qiuhua, S. Xiang, W. Xunsi, Third-order optical nonlinear characterizations of Bi2O3–B2O3–TiO2 ternary glasses. Phys. B 404, 2012–2015 (2009)

    Article  Google Scholar 

  23. J. Qiu, N. Tanaka, N. Sugimoto, K. Hirao, Faraday effect in Tb3+-containing borate, fluoride and fluorophosphates glasses. J. Non-Cryst. Solids 213, 193–198 (1997)

    Article  Google Scholar 

  24. C.K. Bomfork, I.H. Kunkler, J. Walter, Textbook of radiotherapy: radiation physics, therapy and oncology (Churchill Livingstone, China, 2002)

    Google Scholar 

  25. R. Chen, S.W.S. McKeever, Theory of thermoluminescence and related phenomenon (World Scientific Publishing, Singapore, 1997)

    Book  Google Scholar 

  26. M.R. Ioan, Amorphous and crystalline optical materials used as instruments for high gamma radiation doses estimations. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam. Interact. Mater. Atoms (2016). https://doi.org/10.1016/j.nimb.2016.04.009

    Article  Google Scholar 

  27. G.A. Alharshan, D.A. Aloraini, Thermoluminescence properties of slate relevant to radiation measurements. AIP Conf. Proc. 2043, 020004 (2018). https://doi.org/10.1063/1.5080023

    Article  CAS  Google Scholar 

  28. S.B. Lochab, S.P. Pratik Kumar, CaSO4: Dy, Mn: a new and highly sensitive thermoluminescence phosphor for versatile dosimetry. Radiat. Phys. Chem. 119, 136–141 (2016). https://doi.org/10.1016/j.radphyschem.2015.10.004

    Article  CAS  Google Scholar 

  29. R.L. Nyenge, H.C. Swart, D. Poelman, P.F. Smet, L.I.D.J. Martin, L.L. Noto, S. Som, O.M. Ntwaeaborwa, Thermal quenching, cathodoluminescence and thermoluminescence study of Eu2+ doped CaS powder. J. Alloy. Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.10.143

    Article  Google Scholar 

  30. N.J. Shivaramu, B.N. Lakshminarasappa, K.R. Nagabhushana, F. Singh, Thermoluminescence of sol–gel derived Y2O3: Nd3+ nanophosphor exposed to 100MeV Si8+ ions and gamma rays. J. Alloys Compd. 637, 564–573 (2015). https://doi.org/10.1016/j.jallcom.2015.02.218. (ISSN 0925-8388)

    Article  CAS  Google Scholar 

  31. K.K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, V. Singh, S.J. Dhoble, Photoluminescence, thermoluminescence and evaluation of some parameters of Dy3+ activated Sr5(PO4)3F phosphor synthesized by sol-gel method. J. Alloys Compd. 688, 982–993 (2016). https://doi.org/10.1016/j.jallcom.2016.07.114. (ISSN 0925-8388)

    Article  CAS  Google Scholar 

  32. F. Daniels, C.A. Boyd, D.F. Saunders, Thermoluminescence as a research tool. Science 117(3040), 343–349 (1953). https://doi.org/10.1126/science.117.3040.343

    Article  CAS  Google Scholar 

  33. P.J. Fox, R.A. Akber, J.R. Prescott, Spectral characteristics of six phosphors used in thermoluminescence dosimetry. J. Phys. D: Appl Phys. 21(1), 189–193 (1988). https://doi.org/10.1088/0022-3727/21/1/026

    Article  CAS  Google Scholar 

  34. A. Kumar, A.K. Sharma, R. Dogra, M. Manhas, R. Kumar, Thermoluminescence studies of γ-irradiated LiF: Sm3+ nanophosphor, AIP Conference Proceedings [NATIONAL CONFERENCE ON RECENT ADVANCES IN EXPERIMENTAL AND THEORETICAL PHYSICS (RAETP-2018) - Jammu, India (17–18 April 2018)] - 2006, 030013, (2018). https://doi.org/10.1063/1.5051269.

  35. J.H. Schulman, R.D. Kirk, E.J. West, Proc. 1st Int. Conf. on luminescence dosimetry (Standford, 1965), p.113

    Google Scholar 

  36. W. Binder, S. Disterhoft, J.R. Cameron, In: Proc. 2nd Conf. on Luminescence Dosimetry, Gatlinburg. Conf. 680920 (NTIS, Springfield, VA), 113 pp (1968).

  37. S.K. Mehta, S. Sengupta, Al203 phosphor for thermoluminescence dosimetry. Health Phys. 31(2), 176–177 (1976)

    CAS  Google Scholar 

  38. A.C. Lucas, B. Kaspar, In: Proc 5th Conf. on luminescence dosimetry, Sau Paulo (I Phys. Inst. Univ. Giessen), 131 pp (1977).

  39. T. Nakajima, Y. Murayama, T. Matsuzawa, Preparation and dosimetric properties of a highly sensitive LiF thermoluminescent dosimeter. Health Phys. 36(1), 79–82 (1979)

    CAS  Google Scholar 

  40. M. Takenga, O. Yamamoto, T. Yamashita, Nucl. Instum. Methods 175, 77 (1980)

    Article  Google Scholar 

  41. M.S. Akselrod, V.S. Kortov, D.J. Kravetsky, V.I. Gotlib, Highly sensitive thermoluminescent anion-defective alpha-Al203: C single crystal detectors. Radiat. Prot. Dosim. 32(1), 15–20 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080715

    Article  CAS  Google Scholar 

  42. A. El-Adawy, N.E. Khaled, A.R. El-Sersy, A. Hussein, H. Donya, TL dosimetric properties of Li2O–B2O3 glasses for gamma dosimetry. Appl. Radiat. Isot. 68(6), 1132–1136 (2010). https://doi.org/10.1016/j.apradiso.2010.01.017

    Article  CAS  Google Scholar 

  43. M. Santiago, J. Marcazzó, C. Grasselli, A. Lavat, P. Molina, F. Spano, E. Caselli, Thermo- and radioluminescence of undoped and Dy-doped strontium borates prepared by sol-gel method. Radiat. Meas. 46(12), 1488–1491 (2011). https://doi.org/10.1016/j.radmeas.2011.01.006

    Article  CAS  Google Scholar 

  44. E. Ekdal, T. Karalı, A. Kelemen, M. Ignatovych, V. Holovey, C. Harmansah, Thermoluminescence characteristics of Li2B4O7 single crystal dosimeters doped with Mn. Radiat. Phys. Chem. 96, 201–204 (2014). https://doi.org/10.1016/j.radphyschem.2013.10.009

    Article  CAS  Google Scholar 

  45. A. Saidu, H. Wagiran, M.A. Saeed, Y.S.M. Alajerami, Thermoluminescence characteristics of zinc lithium borate glass activated with Cu+(ZnO–Li2O–B2O3:Cu+) for radiation dosimetry. J. Radioanal. Nucl. Chem. 304(2), 627–632 (2015). https://doi.org/10.1007/s10967-014-3846-y

    Article  CAS  Google Scholar 

  46. A. Ab Rasid, H. Wagiran, S. Hashim, Z. Ibrahim, H. Ali, Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6MV photons. Radiat. Phys. Chem. 112, 29–33 (2015). https://doi.org/10.1016/j.radphyschem.2015.02.003

    Article  CAS  Google Scholar 

  47. B. Sanyal, M. Goswami, S. Shobha, V. Prakasan, S.P. Chawla, M. Krishnan, S.K. Ghosh, Synthesis and characterization of Dy 3+ doped lithium borate glass for thermoluminescence dosimetry. J. Non-Cryst. Solids 475, 184–189 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.09.016

    Article  CAS  Google Scholar 

  48. S. İflazoğlu, A. Yılmaz, V.E. Kafadar, M. Topaksu, A.N. Yazıcı, Neutron+Gamma response of undoped and Dy doped MgB4O7 thermoluminescence dosimeter. Appl. Radiat. Isot. (2019). https://doi.org/10.1016/j.apradiso.2019.02.014

    Article  Google Scholar 

  49. E. Salama, H.A. Soliman, Thermoluminescence glow curve deconvolution and trapping parameters determination of dysprosium doped magnesium borate glass. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.03.003

    Article  Google Scholar 

  50. S. Hashim, M.H.A. Mhareb, S.K. Ghoshal, Y.S.M. Alajerami, D.A. Bradley, M.I. Saripan, N. Tamchek, K. Alzimami, Luminescence characteristics of Li2O-MgO-B2O3 doped with Dy3+ as a solid TL detector. Radiat. Phys. Chem. (2015). https://doi.org/10.1016/j.radphyschem.2015.04.007

    Article  Google Scholar 

  51. S. Hashim, R.S. Omar, S.K. Ghoshal, Realization of dysprosium doped lithium magnesium borate glass based TLD subjected to 1–100 Gy photon beam irradiations. Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.05.016

    Article  Google Scholar 

  52. S. Meghnath, S. Rakesh, V. Sathian, M.S. Kulkarni, A.K. Tyagi, Thermoluminescence based personnel neutron dosimetry study of LiMgBO3:Dy3+. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.105

    Article  Google Scholar 

  53. M. Oglakci, M. Topaksu, N. Can, Thermoluminescence glow curves of beta irradiated NaBaBO3: Ce3+ phosphor synthesized by combustion method. Sens. Actuators, A 315, 112299 (2020). https://doi.org/10.1016/j.sna.2020.112299

    Article  CAS  Google Scholar 

  54. D. Nakauchi, G. Okada, Y. Fujimoto, N. Kawano, K. Noriaki, Y. Takayuki, Optical and radiation-induced luminescence properties of Ce-doped magnesium aluminoborate glasses. Opt. Mater. 72, 190–194 (2017). https://doi.org/10.1016/j.optmat.2017.05.063

    Article  CAS  Google Scholar 

  55. D. Nakauchi, G. Okada, Y. Fujimoto, N. Kawano, K. Noriaki, Y. Takayuki, Optical and radiation-induced luminescence properties of Sn-doped magnesium aluminoborate glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B 60, 10–14 (2019). https://doi.org/10.13036/17533562.60.1.029

    Article  Google Scholar 

  56. A. Saidu, H. Wagiran, M.A. Saeed, Y.S.M. Alajerami, A.B.A. Kadir, Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system. Appl. Radiat. Isot. (2016). https://doi.org/10.1016/j.apradiso.2016.10.005

    Article  Google Scholar 

  57. T. Ahamad, Z.A. Alothman, M. Naushad, K. Yusuf, Synthesis and characterization of CuO doped lithium magnesium borate glasses for thermoluminescence dosimetry. Optik 231, 166369 (2021). https://doi.org/10.1016/j.ijleo.2021.166369

    Article  CAS  Google Scholar 

  58. I. Rammadhan, S. Taha, H. Wagiran, Thermoluminescence characteristics of Cu2O doped calcium lithium borate glass irradiated with the cobalt-60 gamma rays. J. Lumin. 186, 117–122 (2017). https://doi.org/10.1016/j.jlumin.2017.02.026

    Article  CAS  Google Scholar 

  59. N. Salleh, T. Abd Rahman, M. Saeed, Effect of strontium concentration on thermoluminescence glow curve of copper doped lithium magnesium borate glass. Malays. J. Fundam. Appl. Sci. (2017). https://doi.org/10.11113/mjfas.v13n3.570

    Article  Google Scholar 

  60. V. Chopra, S.J. Dhoble, K.K. Gupta, A. Singh, A. Pandey, Thermoluminescence of Li2B4O7: Cu phosphor exposed to proton beam for dosimetric application. Radiat. Meas. (2018). https://doi.org/10.1016/j.radmeas.2018.05.002

    Article  Google Scholar 

  61. I. Hossain, N.K. Shekaili, H. Wagiran, Thermoluminescence response of copper-doped potassium borate glass subjected to 6 megavolt X-Ray irradiation. J. Appl. Spectrosc. 82(1), 149–152 (2015). https://doi.org/10.1007/s10812-015-0078-z

    Article  CAS  Google Scholar 

  62. N.S. Prabhu, V. Hegde, M.I. Sayyed, O. Agar, S.D. Kamath, Investigations on structural and radiation shielding properties of Er3+ doped zinc bismuth borate glasses. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.03.074

    Article  Google Scholar 

  63. V. Hegde, N.S. Prabhu, W. Akshatha, M.I. Sayyed, O. Agar, S.D. Kamath, Influence of 125 MeV gamma rays on optical and luminescent features of Er3+ doped zinc bismuth borate glasses. Results Phys. 12(1), 1762–1769 (2019). https://doi.org/10.1016/j.rinp.2019.02.003

    Article  Google Scholar 

  64. V. Bhatia, D. Kumar, H. Singh, N. Kaur, S.M. Rao, A. Kumar, V. Mehta, S.P. Singh, Structural, optical and thermoluminescence properties of newly developed MnKB: Er3+ glass system. J. Non-Cryst. Solids 543, 120113 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120113

    Article  CAS  Google Scholar 

  65. V. Bhatia, D. Kumar, H. Singh, N. Kaur, S.M. Rao, A. Kumar, V. Mehta, S.P. Singh, Effects of Sm3+ ions on the structural, optical and thermoluminescence properties of MnKB glass system. J. Phys. Chem. Solids 161, 110408 (2022). https://doi.org/10.1016/j.jpcs.2021.110408

    Article  CAS  Google Scholar 

  66. J. Anjaiah, C. Laxmikanth, N. Veeraiah, Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses. Phys. B: Condens Matter 454, 148–156 (2014). https://doi.org/10.1016/j.physb.2014.07.070

    Article  CAS  Google Scholar 

  67. J. Anjaiah, C. Laxmikanth, N. Veeraiah, P. Kistaiah, Infrared luminescence and thermoluminescence of lithium borate glasses doped with Sm3+ ions. Mater. Science-Poland (2014). https://doi.org/10.1515/msp-2015-0028

    Article  Google Scholar 

  68. V. Hegde, N. Chauhan, V. Kumar, C.D. Viswanath, K.K. Mahato, D.K. Sudha, Effects of high dose gamma irradiation on the optical properties of Eu3+ doped zinc sodium bismuth borate glasses for red LEDs. J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2018.11.023

    Article  Google Scholar 

  69. K. Sudhakar, M. Srinivasa Reddy, L. Rao, N. Veeraiah, Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system. J. Lumin. 128, 1791–1798 (2008). https://doi.org/10.1016/j.jlumin.2008.04.010

    Article  CAS  Google Scholar 

  70. H. Obayes, O. Obayes, Q. Kadhim, A. Saidu, M.H. Al-Maamori, Improved thermoluminescence and kinetic parameters of new strontium/ copper co-doped lithium borate glass system. Nucl. Inst. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms. (2019). https://doi.org/10.1016/j.nimb.2019.06.028

    Article  Google Scholar 

  71. H. Ono, Y. Fujimoto, T. Yahaba, T. Yanagida, M. Koshimizu, K. Asai, Thermoluminescence properties of Tb3+-doped CaO–Al2O3–B2O3-based glasses. Optic. Mater. (2018). https://doi.org/10.1016/j.optmat.2018.07.004

    Article  Google Scholar 

  72. M. Ismail, A. Saddon, M. Fahmi, Impact of Zn2+ ions co-doping on the TL properties of Cu2+ ion-doped calcium lithium borate glass irradiated by various radiation sources. J. Lumin. 236, 118091 (2021). https://doi.org/10.1016/j.jlumin.2021.118091

    Article  CAS  Google Scholar 

  73. E. M. Abou Hussein, S.M. Gafar, Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications. Radiochimica Acta (2022). https://doi.org/10.1515/ract-2022-0029.

    Article  Google Scholar 

  74. M. Bahra, M. Jaafar, H. Wagiran, Thermoluminescence dosimetry properties and kinetic parameters of zinc borate silica glass doped with Cu2O and co-doped with SnO2. J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2018.08.020

    Article  Google Scholar 

  75. A.S. El-Bayoumi, H. Alazab, F. Ezz-Eldin, The impact of γ-irradiation on Cd-B2O3 glass doped WO3: new evidences by TL and ESR spectroscopy. J. Non-Cryst. Solids 551, 120459 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120459

    Article  CAS  Google Scholar 

  76. C. Ivascu, A. Timar Gabor, O. Cozar, L. Daraban, I. Ardelean, FT-IR, Raman and thermoluminescence investigation of P2O5–BaO–Li2O glass system. J. Mol. Struct. 993(1–3), 249–253 (2011)

    Article  CAS  Google Scholar 

  77. R. Swamy, S. Bhaskar, Y. Gandhi, R. Kadam, N. Venkatarman, P. Raghava, N. Veeraiah, Thermoluminescence study of MnO doped borophosphate glass samples for radiation dosimetry. J. Non-Cryst. Solids 368, 40–44 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.02.020

    Article  CAS  Google Scholar 

  78. B.J.R. Swamy, S. Bhaskar, R. Vijay, P. Ramesh Babu, D. Krishna Rao, N. Veeraiah, Influence of copper ions on thermoluminescence characteristics of CaF2–B2O3–P2O5 glass system. Ceram. Int. 40, 3707–3713 (2014)

    Article  CAS  Google Scholar 

  79. B. Biró, A. Pascu, A. Timar-Gabor, V. Simon, Thermoluminescence investigations on xY2O3 (60–x)P2O5·40SiO2 vitroceramics. Appl. Radiat. Isot. 98, 49–53 (2015). https://doi.org/10.1016/j.apradiso.2015.01.019

    Article  CAS  Google Scholar 

  80. M.A.K. Abdelhalim, B.M. Al-Shamrani, Improvement of the thermoluminescence properties of the P2O5-Li2O glass system by using nanoparticles. J. Lumin. (2016). https://doi.org/10.1016/j.jlumin.2016.08.028

    Article  Google Scholar 

  81. T. Kalpana, Y. Gandhi, S. Bhaskar, V. Sudarsan, P. Bragiel, M. Piasecki, V. Ravi Kumar, N. Veeraiah, Influence of alumina on photoluminescence and thermoluminescence characteristics of Gd3+ doped barium borophosphate glasses. J. Lumin. (2016). https://doi.org/10.1016/j.jlumin.2016.06.053

    Article  Google Scholar 

  82. T. Kalpana, S. Bhaskar, Y. Gandhi, V. Ravi Kumar, G.S. Baskaran, P. Bragiel, M. Piasecki, N. Veeraiah, Thermoluminescence features of alumina-mixed borophosphate glasses with Tb3+ ions for dosimetric applications. Int. J. Appl. Glass Sci. 8(2), 188–195 (2017)

    Article  CAS  Google Scholar 

  83. H. Tanaka, Y. Fujimoto, K. Saeki, M. Koshimizu, T. Yanagida, K. Asai, Radiophotoluminescence properties of Ag-doped mixed phosphate glasses. Radiat. Meas. (2017). https://doi.org/10.1016/j.radmeas.2017.01.010

    Article  Google Scholar 

  84. M.A. Vallejo, M. Perez, P.V. Ceron, R. Navarro, C. Villaseñor, T. Cordova, M. Sosa, Photoluminescence and thermoluminescence of phosphate glasses doped with Dy3+ and containing silver nanoparticles. Nano (2017). https://doi.org/10.1142/S1793292017501454

    Article  Google Scholar 

  85. T. Sunil, M.L. Chithambo, Thermoluminescence of K-Mg-Al-Zn fluorophosphate glass. Optic. Mater. 64, 302–309 (2017). https://doi.org/10.1016/j.optmat.2016.12.035

    Article  CAS  Google Scholar 

  86. A. El-Kheshen, C. Woda, M. Discher, N. El-Faramawy, Investigation of phosphate glass doped lanthanum as beta dosimeter. J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2018.04.001

    Article  Google Scholar 

  87. H.F. El-Nashar, M. El-Kinawy, N.A. El-Faramawy, Investigations of the kinetic energy parameters of irradiated (La)-doped phosphate glass. Lumin. J. Biol. Chem. Lumin. (2019). https://doi.org/10.1002/bio.3703

    Article  Google Scholar 

  88. M.A.K. Abdelhalim, M.S. Al-Ayed, B.M. Al-Shamrani, Synthesizing new glass 40P2O5 – 50BaO - 25Na2O – 25MgO - 5TiO2 for the application in high radiation environmental dosimetry. AIP Adv. 8, 095212 (2018). https://doi.org/10.1063/1.5030338

    Article  CAS  Google Scholar 

  89. I. El Mesady, S. Alawsh, Optical and luminescence properties of silicon doped alumino-phosphate-sodium glass system. J. Non-Cryst. Solids 482, 236–242 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.12.054

    Article  CAS  Google Scholar 

  90. S. Hirano, N. Kawano, G. Okada, N. Kawaguchi, T. Yanagida, PL and TSL properties of tin-doped zinc sodium phosphate glasses. Radiat. Meas. (2018). https://doi.org/10.1016/j.radmeas.2018.03.002

    Article  Google Scholar 

  91. A. Gasiorowski, P. Szajerski, Thermoluminescence characteristics and dose-response of electron beam and gamma rays irradiated alumino-phosphate glasses doped with Gd2O3 and Tb2O3. J. Lumin. 214, 116519 (2019). https://doi.org/10.1016/j.jlumin.2019.116519

    Article  CAS  Google Scholar 

  92. A. Gasiorowski, P. Szajerski, Particles size increase assisted enhancement of thermoluminescence emission in gadolinium and dysprosium oxide doped phosphate glasses. J. Alloys Compds. 839, 155479 (2020). https://doi.org/10.1016/j.jallcom.2020.155479

    Article  CAS  Google Scholar 

  93. A. Gasiorowski, P. Szajerski, J.F.B. Cuevas, Use of terbium doped phosphate glasses for high dose radiation dosimetry—thermoluminescence characteristics, dose response and optimization of readout method. Appl. Sci. 11, 7221 (2021). https://doi.org/10.3390/app11167221

    Article  CAS  Google Scholar 

  94. N.Y. Abdou, M.M. Farag, W.M. Abd-Allah, Thermoluminescent properties of nano-magnesium phosphate ceramic for radiation dosimetry. Eur. Phys. J. Plus 135, 317 (2020). https://doi.org/10.1140/epjp/s13360-020-00310-1

    Article  CAS  Google Scholar 

  95. P. Rubalajyothi, A. Rajendran, Thermoluminescence characteristics studies of phosphor material with anti-bacterial activity. J. Crit. Rev. 7(1), 2020 (2019)

    Google Scholar 

  96. P. Vinodkumar, S. Panda, U. Madhusoodanan, B.S. Panigrahi, Thermoluminescence properties of strontium borophosphate doped with praseodymium and enhancement with uranyl cooping. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2020.108914

    Article  Google Scholar 

  97. A. Raja, R. Nagaraj, K. Ramachandran, V. Sivasubramani, G. Annadurai, D.J. Daniel, P. Ramasamy, A facile synthesis, structural and triple-luminescence properties of a novel fluoroperovskite RbCaF3: Sm3+ phosphor for radiation dosimetry and orange-red LED applications. Mater. Sci. Eng. B. 255, 114531 (2020). https://doi.org/10.1016/j.mseb.2020.114531

    Article  CAS  Google Scholar 

  98. K. Munirathnam, P.C. Nagajyothi, K. Hareesh, M.M. Kumar, S.D. Dhole, Effect of Mn codopant on thermoluminescence properties of γ-rays irradiated Na3Y(PO4)2: Dy phosphors for dosimetry applications. Appl. Phys. A, Mater. Sci. Process. 127(1), 1–9 (2021). https://doi.org/10.1007/s00339-020-04202-0

    Article  CAS  Google Scholar 

  99. W. Li, Z. Chen, J. Xu, P. Zhao, Y. Fan, C. He, Synthesis and optical properties of novel Gd3+-doped BaZn2(PO4)2 glass-ceramics for radiation detection applications. J. Rare Earths (2021). https://doi.org/10.1016/j.jre.2021.11.010

    Article  Google Scholar 

  100. R. Kaur, R.B. Rakesh, S.G. Mhatre, V. Bhatia, D. Kumar, H. Singh, S.P. Singh, A. Kumar, Physical, optical, structural and thermoluminescence behaviour of borosilicate glasses doped with trivalent neodymium ions. Optic. Mater. 121, 111109 (2021). https://doi.org/10.1016/j.optmat.2021.111109

    Article  CAS  Google Scholar 

  101. H.A. Alazab, N.Y. Abdou, H.A. Saudi et al., Thermoluminescence properties of bioglass for radiation dosimetry. Silicon (2021). https://doi.org/10.1007/s12633-021-01364-1

    Article  Google Scholar 

  102. G.A. Kumar, Y. Rambabu, R.K. Guntu, K. Sivaram, M.S. Reddy, C.S. Rao, V. Venkatramu, V.R. Kumar, N.C.S.N. Iyengar, ZrxCa30-xP70 thermoluminescent bio glass, structure and elasticity. J. Mech. Behav. Biomed. Mater. 119, 104517 (2021). https://doi.org/10.1016/j.jmbbm.2021.104517

    Article  CAS  Google Scholar 

  103. A.N. D’Souza, K. Sharmila, D.K. Gaikwad, M.I. Sayyed, H.M. Somashekarappa, H. Al-Ghamdi, A.H. Almuqrin, S.D. Kamath, Evaluation of bismuth added HMO glasses in terms of thermal, mechanical, gamma radiation shielding and thermoluminescence properties. Mater. Res. (2021). https://doi.org/10.1590/1980-5373-MR-2021-0243

    Article  Google Scholar 

  104. T.N.H. Tengku KamarulBahri, H. Wagiran, R. Hussin, I. Hossain, T. Kadni, Thermoluminescence properties of CaO–B2O3 glass system doped with GeO2. Radiat. Phys. Chem. 102, 103–107 (2014). https://doi.org/10.1016/j.radphyschem.2014.03.029

    Article  CAS  Google Scholar 

  105. G.R. Barrera, L.F. Souza, A.L.F. Novais, L.V.E. Caldas, C.M. Abreu, R. Machado, E.M. Sussuchi, D.N. Souza, Thermoluminescence and optically stimulated luminescence of PbO–H3BO3 and PbO–H3BO3– Al2O3 glasses. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.02.005

    Article  Google Scholar 

  106. A. Ozdemir, Investigation of dosimetric properties of newly-developed Li2B4 O7:Ag+, La3+ using thermoluminescence (TL) technique. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153722

    Article  Google Scholar 

  107. T. Sunil, C. Makaiko, Kinetic analysis and general features of thermoluminescence of B2O3-Li2O-ZnF2 glass. Radiat. Meas. 100, 1–8 (2017). https://doi.org/10.1016/j.radmeas.2017.03.038

    Article  CAS  Google Scholar 

  108. H.A. Tajuddin, W.M.S. Wanhassan, S.A. Sani, N.S. Shaharin, Thermoluminescent properties of Dy doped calcium borate based glass for dose measurement subjected to photon irradiation. EPJ Web Conf. 156, 00002 (2017). https://doi.org/10.1051/epjconf/201715600002

    Article  CAS  Google Scholar 

  109. Y. Fujimoto, T. Yanagida, M. Koshimizu, K. Asai, Optical and dosimeter properties of Li2O–Al2O3–B2O3 based glasses. J. Ceram. Soc. Jpn. 125, 728–731 (2017). https://doi.org/10.2109/jcersj2.17076

    Article  CAS  Google Scholar 

  110. H. Vinod, C.S. Viswanath, M. Krishna, S. Sudha, Photoluminescence and thermally stimulated luminescence properties of Pr3+-doped zinc sodium bismuth borate glasses. Optic. Mater. (2018). https://doi.org/10.1016/j.optmat.2018.06.064

    Article  Google Scholar 

  111. N.S. Prabhu, K. Sharmila, H.M. Somashekarappa, G. Lakshminarayana, S. Mandal, M.I. Sayyed, S.D. Kamath, Thermoluminescence features of Er3+ doped BaO-ZnO-LiFB2O3 glass system for high-dose gamma dosimetry. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.276

    Article  Google Scholar 

  112. R. Kaur, R.B. Rakesh, S.G. Mhatre, V. Bhatia, D. Kumar, H. Singh, S.P. Singh, A. Kumar, Thermoluminescence, structural and optical properties of Ce3+ doped borosilicate doped glasses. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06382-8

    Article  Google Scholar 

Download references

Funding

This study is not funded by any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hima Bindu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.A., Bindu, P.H. Advances in borate- and phosphate-based TL materials for in vivo dosimetry. J. Korean Ceram. Soc. 59, 537–550 (2022). https://doi.org/10.1007/s43207-022-00240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00240-x

Keywords

Navigation