Skip to main content

Advertisement

Log in

Novel NiCo2Se4/Mn0.5Cd0.5S photocatalyst for visible light-driven hydrogen evolution

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The development of efficient and stable photocatalysts is one of the most important research directions to realize the practical application of photocatalytic hydrogen evolution. A series of novel visible light responsive NiCo2Se4/Mn0.5Cd0.5S composites with different NiCo2Se4 contents were prepared by hydrothermal method. The composites were characterized using different characterization techniques such as XRD, SEM, TEM, XPS, UV–Vis DRS, PL, and photoelectrochemistry. Photocatalytic hydrogen evolution reaction was also performed using visible light (λ > 420 nm) in an aqueous solution containing Na2S·9H2O and Na2SO3 as sacrificial reagents. The 4% NiCo2Se4/ Mn0.5Cd0.5S composites exhibited the highest photocatalytic hydrogen evolution capacity, producing 20 mmol h−1 g−1 of hydrogen, higher than pure Mn0.5Cd0.5S (12.2 mmol h−1 g−1). The tight bonding of the two materials in the NiCo2Se4/Mn0.5Cd0.5S composites may enhance the photocatalytic activity to some extent. The possible mechanism was suggested by UV–Vis DRS and photoelectrochemical measurements. The obtained NiCo2Se4/Mn0.5Cd0.5S composites have excellent photocatalytic activity and good stability in photocatalytic hydrogen evolution, and have potential applications in the photocatalytic hydrogen evolution from water using solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. J. Zhang, C. Cheng, F. Xing, C. Chen, C. Huang, 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chem. Eng. J. 414, 129157 (2021)

    Article  CAS  Google Scholar 

  2. X. Ma, D. Li, P. Su, Z. Jiang, Z. Jin, Mn0.2Cd0.8S modified with 3D flower-shaped Co3(PO4)2 for efficient photocatalytic hydrogen production. Int. J. Energy Res. 45, 19453–19466 (2021)

    Article  CAS  Google Scholar 

  3. W.Q. Cai, F.J. Zhang, Y.R. Wang, D.C. Li, Enhanced photocatalytic hydrogen evolution under visible light using noble metal-free ZnS NPs/Ni@Trimellitic acid porous microsphere heterojunction. Korean J. Chem. Eng. 39, 1268–1276 (2022)

    Article  CAS  Google Scholar 

  4. X. Liu, B. Wu, X. Chen, L. Yan, H. Guo, K. Li, L. Xu, J. Lin, A novel hierarchical Bi2MoO6/Mn0.2Cd0.8S heterostructured nanocomposite for efficient visible-light hydrogen production. Int. J. Hydrogen Energy. 45, 2884–2895 (2020)

    Article  CAS  Google Scholar 

  5. W. Cai, F. Zhang, Y. Wang, D. Li, A novel I-type 0D/0D ZnS@Cu3P heterojunction for photocatalytic hydrogen evolution. Inorg. Chem. Commun. 134, 109046 (2021)

    Article  CAS  Google Scholar 

  6. C. Kong, F. Zhang, Y. Wang, J. Huang, Synthesis and photocatalytic hydrogen activity of Mo1−xS2 nanosheets with controllable Mo vacancies. J. Alloys Compd. 876, 160165 (2021)

    Article  CAS  Google Scholar 

  7. J. Wang, J. Luo, D. Liu, S. Chen, T. Peng, One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl. Catal. B. 241, 130–140 (2019)

    Article  CAS  Google Scholar 

  8. X. Liu, X. Liang, P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, Highly efficient and noble metal-free NiS modified MnxCd1-xS solid solutions with enhanced photocatalytic activity for hydrogen evolution under visible light irradiation. Appl. Catal. B. 203, 282–288 (2017)

    Article  CAS  Google Scholar 

  9. Q.Z. Huang, Z.J. Tao, L.Q. Ye, H.C. Yao, Z.J. Li, Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl. Catal. B. 237, 689–698 (2018)

    Article  CAS  Google Scholar 

  10. G. Xiao, J. Pan, Y. Fu, Y. Zhang, W. Fu, J. Niu, J. Wang, Y. Zheng, C. Li, The TiO2/Mn0.2Cd0.8S hollow heterojunction with Mn/Cd bimetallic synergy towards photocatalytic hydrogen production enhancement. Int. J. Hydrogen Energy. 46, 28565–28574 (2021)

    Article  CAS  Google Scholar 

  11. T. Liu, K. Yang, H. Gong, Z. Jin, Visible-light driven S-scheme Mn0.2Cd0.8S/CoTiO3 heterojunction for photocatalytic hydrogen evolution. Renew. Energy. 173, 389–400 (2021)

    Article  CAS  Google Scholar 

  12. X. Liu, X. Chen, L. Xu, B. Wu, X. Tu, X. Luo, F. Yang, J. Lin, Non-noble metal ultrathin MoS2 nanosheets modified Mn0.2Cd0.8S heterostructures for efficient photocatalytic H2 evolution with visible light irradiation. Int. J. Hydrogen Energy. 45, 26770–26784 (2020)

    Article  CAS  Google Scholar 

  13. L. Li, G. Liu, S. Qi, X. Liu, L. Gu, Y. Lou, J. Chen, Y. Zhao, Highly efficient colloidal MnxCd1−xS nanorod solid solution for photocatalytic hydrogen generation. J. Mater. Chem. A. 6, 23683–23689 (2018)

    Article  CAS  Google Scholar 

  14. H. Gong, G. Wang, H. Li, Z. Jin, Q. Guo, Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p–n heterojunction for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy. 45, 26733–26745 (2020)

    Article  CAS  Google Scholar 

  15. K. Ikeue, Y. Shinmura, M. Machida, Ag-doped Mn–Cd sulfide as a visible-light-driven photocatalyst for H2 evolution. Appl. Catal. B. 123–124, 84–88 (2012)

    Article  Google Scholar 

  16. H. Liu, Z. Xu, Z. Zhang, D. Ao, Novel visible-light driven Mn0.8Cd0.2S/g-C3N4 composites: preparation and efficient photocatalytic hydrogen production from water without noble metals. Appl. Catal. A. 518, 150–157 (2016)

    Article  CAS  Google Scholar 

  17. Q.Z. Huang, Y. Xiong, Q. Zhang, H.C. Yao, Z.J. Li, Noble metal-free MoS2 modified Mn0.25Cd0.75S for highly efficient visible-light driven photocatalytic H2 evolution. Appl. Catal. B. 209, 514–522 (2017)

    Article  CAS  Google Scholar 

  18. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv Mater. 29, 1601694 (2017)

    Article  Google Scholar 

  19. D. Xu, L. Li, T. Xia, W. Fan, F. Wang, H. Bai, W. Shi, Heterojunction composites of g-C3N4/KNbO3 enhanced photocatalytic properties for water splitting. Int. J. Hydrogen Energy. 43, 16566–16572 (2018)

    Article  CAS  Google Scholar 

  20. S. Zhao, J. Xu, M. Mao, L. Li, X. Li, NiCo2S4@Zn0.5Cd0.5S with direct Z-scheme heterojunction constructed by band structure adjustment of ZnxCd1-xS for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 528, 147016 (2020)

    Article  CAS  Google Scholar 

  21. X. Jiang, H. Gong, Q. Liu, M. Song, C. Huang, In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light. Appl. Catal. B. 268, 118439 (2020)

    Article  CAS  Google Scholar 

  22. C. Cheng, J. Wang, X. Guo, F. Xing, C. Huang, M. Song, Thermal-assisted photocatalytic H2 production over sulfur vacancy-rich Co0.85Se/Mn0.3Cd0.7S nanorods under visible light. Appl. Surf. Sci. 557, 149812 (2021)

    Article  CAS  Google Scholar 

  23. L.C. Qiu, Q.C. Wang, X.Y. Yue, Q.Q. Qiu, X.L. Li, D. Chen, X.J. Wu, Y.N. Zhou, NiCo2Se4 as an anode material for sodium-ion batteries. Electrochem. Commun. 112, 106684 (2020)

    Article  CAS  Google Scholar 

  24. B.G. Amin, A.T. Swesi, J. Masud, M. Nath, CoNi2Se4 as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 53, 5412–5415 (2017)

    Article  CAS  Google Scholar 

  25. C. Zhou, P. Zhang, J. Liu, J. Zhou, W. Wang, K. Li, J. Wu, Y. Lei, L. Chen, Hierarchical NiCo2Se4 nanoneedles/nanosheets with N-doped 3D porous graphene architecture as free-standing anode for superior sodium ion batteries. J Colloid Interface Sci. 587, 260–270 (2021)

    Article  CAS  Google Scholar 

  26. W. Zong, R. Lian, G. He, H. Guo, Y. Ouyang, J. Wang, F. Lai, Y.E. Miao, D. Rao, D. Brett, T. Liu, Vacancy engineering of group VI anions in NiCo2A4 (A = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochim. Acta. 333, 135515 (2020)

    Article  CAS  Google Scholar 

  27. M. Wang, Q. Liu, N. Xu, N. Su, X. Wang, W. Su, An amorphous CoSx modified Mn0.5Cd0.5S solid solution with enhanced visible-light photocatalytic H2-production activity. Catal. Sci. Technol. 8, 4122–4128 (2018)

    Article  CAS  Google Scholar 

  28. S. Ghosh, P. Samanta, N.C. Murmu, T. Kuila, Investigation of electrochemical charge storage in nickel-cobalt-selenide/reduced graphene oxide composite electrode and its hybrid supercapacitor device. J. Alloys Compd. 835, 155432 (2020)

    Article  CAS  Google Scholar 

  29. P. Huang, S. Zhang, H. Ying, Z. Zhang, W. Han, Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior Sodium-ion batteries. Chem. Eng. J. 417, 129161 (2021)

    Article  CAS  Google Scholar 

  30. Y. Zhang, J. Wang, N. Xu, X. Wang, W. Su, Ni(OH)2 modified Mn0.5Cd0.5S with efficient photocatalytic H2 evolution activity under visible-light. Int. J. Hydrogen Energy. 45, 21532–21539 (2020)

    Article  CAS  Google Scholar 

  31. X. Jiang, Q. Liu, C. Cheng, F. Xing, C. Chen, C. Huang, In situ photodeposition of metalloid Ni2P co-catalyst on Mn0.5Cd0.5S for enhanced photocatalytic H2 evolution with visible light. Int. J. Hydrogen Energy. 46, 5197–5206 (2021)

    Article  CAS  Google Scholar 

  32. X. Yang, Y. Guo, Y. Lou, J. Chen, O-MoS2/Mn0.5Cd0.5S composites with enhanced activity for visible-light-driven photocatalytic hydrogen evolution. Catal. Sci. Technol. 10, 5298–5305 (2020)

    Article  CAS  Google Scholar 

  33. M. Zhang, N. Fang, X. Song, Y. Chu, S. Shu, Y. Liu, p–n heterojunction photocatalyst Mn0.5Cd0.5S/CuCo2S4 for highly efficient visible light-driven H2 production. ACS Omega 5, 32715–32723 (2020)

    Article  CAS  Google Scholar 

  34. N. Fang, X. Song, M. Zhang, Y. Chu, Design and fabrication of C-Mn0.5Cd0.5S/Cu3P ternary heterojunction catalyst for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy. 46, 30382–30392 (2021)

    Article  CAS  Google Scholar 

  35. Y. Li, L. Xu, M. Jia, L. Cui, J. Gao, X.-J. Jin, Hydrothermal synthesis and characterization of litchi-like NiCo2Se4@carbon microspheres for asymmetric supercapacitors with high energy density. J. Electrochem. Soc. 165, E303–E310 (2018)

    Article  CAS  Google Scholar 

  36. S.M.N. Jeghan, G. Lee, One-dimensional hierarchical nanostructures of NiCo2O4, NiCo2S4 and NiCo2Se4 with superior electrocatalytic activities toward efficient oxygen evolution reaction. Nanotechnology 31, 295405 (2020)

    Article  CAS  Google Scholar 

  37. Y. Liu, J. Gong, J. Wang, C. Hu, M. Xie, X. Jin, S. Wang, Y. Dai, Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors. J. Alloys Compd. 899, 163354 (2022)

    Article  CAS  Google Scholar 

  38. K. Wang, Z. Lin, Y. Tang, Z. Tang, C.L. Tao, D.D. Qin, Y. Tian, Selenide/sulfide heterostructured NiCo2Se4/NiCoS4 for oxygen evolution reaction, hydrogen evolution reaction, water splitting and Zn-air batteries. Electrochim. Acta. 368, 137584 (2021)

    Article  CAS  Google Scholar 

  39. B. Ameri, A. Mohammadi-Zardkhoshoui, S.S. Hosseiny-Davarani, An advanced hybrid supercapacitor constructed from rugby-ball-like NiCo2Se4 yolk–shell nanostructures. Mater. Chem. Front. 5, 4725–4738 (2021)

    Article  CAS  Google Scholar 

  40. X. Meng, L. Shi, L. Cui, L. Yao, Y. Zhang, Hydrothermal preparation of Mn0.5Cd0.5S/carbon nanotubes nanocomposite photocatalyst with improved H2 production performance. Mater. Chem. Front. 5, 4725–4738 (2021)

    Google Scholar 

  41. D. Kong, D. Yin, D. Zhang, F. Yuan, B. Song, S. Yao, J. Yin, Y. Geng, X. Pu, Noble metal-free 0D–1D NiCoP/Mn0.3Cd0.7S nanocomposites for highly efficient photocatalytic H2 evolution under visible-light irradiation. Nanotechnology 31, 305701 (2020)

    Article  CAS  Google Scholar 

  42. H.Q. Feng, Y. Xi, H.Q. Xie, Y.K. Li, Q.Z. Huang, An efficient ternary Mn0.2Cd0.8S/MoS2/Co3O4 heterojunction for visible-light-driven photocatalytic H2 evolution. Int. J. Hydrogen Energy. 45, 10764–10774 (2020)

    Article  CAS  Google Scholar 

  43. Y. Han, X. Dong, Z. Liang, Synthesis of MnxCd1−xS nanorods and modification with CuS for extraordinarily superior photocatalytic H2 production. Catal. Sci. Technol. 9, 1427–1436 (2019)

    Article  CAS  Google Scholar 

  44. P. Yang, Y. Yang, L. Jiang, J. He, D. Chen, Y. Chen, J. Wang, Significantly enhanced photocatalytic hydrogen evolution under visible light over LaCoO3-decorated cubic/hexagonal Mn0.25Cd0.75S. Catal. Lett. 152, 659–668 (2021)

    Article  Google Scholar 

  45. H. Peng, Y. Du, X. Zheng, J. Wen, High-temperature sulfurized synthesis of MnxCd1−xS/S-kaolin composites for efficient solar-light driven H2 evolution. Colloids Surf. A. 632, 127772 (2022)

    Article  CAS  Google Scholar 

  46. R. Chen, Y. Ao, C. Wang, P. Wang, 2D ultrathin CoP modified MnxCd1−xS with controllable band structure and robust photocatalytic performance for hydrogen generation. Dalton Trans. 48, 14783–14791 (2019)

    Article  CAS  Google Scholar 

  47. Y. Xi, H.Q. Feng, Y.K. Li, Q.Z. Huang, Cauliflower-like MnxCd1−xS modified with Ni2P for enhanced photocatalytic H2 evolution. Appl. Surf. Sci. 567, 150465 (2021)

    Article  CAS  Google Scholar 

  48. J. Yan, L. Shi, F. Wang, L. Yao, The boosted and inactivated mechanism of photocatalytic hydrogen evolution from pure water over CoP modified phosphorus doped MnxCd1−xS. J. Taiwan Inst. Chem. Eng. 131, 104195 (2022)

    Article  CAS  Google Scholar 

  49. H. Zhao, S. Sun, P. Jiang, Z.J. Xu, Graphitic C3N4 modified by Ni2P cocatalyst: an efficient, robust and low cost photocatalyst for visible-light-driven H2 evolution from water. Chem. Eng. J. 315, 296–303 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major Projects of Natural Science Research in Anhui Colleges and Universities (KJ2018ZD050), the University Synergy Innovation Program of Anhui Province (GXXT-2019-017, GXXT-2020-009), Natural Science Foundation of Anhui province (1808085ME129, 1908085MB55,2108085QE213), Key research and development plan of Anhui Province (202004a05020060, 202003a05020045), Outstanding Young Talents Support Program in Colleges and Universities (gxyqZD2018056) and Natural Science Foundation of Anhui Provincial Education (KJ2020ZD44,KJ2019A0776).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Jun Zhang or Won-Chun Oh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with this work.

Ethical approval

All data generated or analyzed during this study are included in this published article.

Research involving human and animals’ rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, FJ., Wang, YR. et al. Novel NiCo2Se4/Mn0.5Cd0.5S photocatalyst for visible light-driven hydrogen evolution. J. Korean Ceram. Soc. 60, 637–645 (2023). https://doi.org/10.1007/s43207-022-00229-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00229-6

Keywords

Navigation