Skip to main content
Log in

Significantly Enhanced Photocatalytic Hydrogen Evolution Under Visible Light Over LaCoO3-Decorated Cubic/Hexagonal Mn0.25Cd0.75S

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Constructing of homojunction of sulfides would be an effective method to improve photocatalytic hydrogen evolution activity. However, only pure hexagonal phase Mn0.25Cd0.75S was synthesized so far. Herein, a series of cubic/hexagonal Mn0.25Cd0.75S (CH-MCS) photocatalysts were hydrothermally synthesized by controlling the amount of thioacetamide. When the molar ratio of Mn:Cd:S equals to 1:3:6, the CH-MCS exhibited the maximum H2 production rate of 5.85 mmol g−1 h−1. Moreover, the optimized CH-MCS modified with 10 wt% LaCoO3 reached the maximal rate of H2 evolution to 14.5 mmol g−1 h−1, that is 5.5 folds to pure hexagonal Mn0.25Cd0.75S and 2.5 folds to the optimized CH-MCS, which can be attributed to the cubic/hexagonal crystal phase homojunctions and the enhancement of visible-light absorptions caused by the decoration of LaCoO3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  CAS  PubMed  Google Scholar 

  2. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884

    Article  CAS  PubMed  Google Scholar 

  3. Chai B, Peng T, Zeng P, Zhang X, Liu X (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115(13):6149–6155

    Article  CAS  Google Scholar 

  4. He J, Wang J, Chen Y, Zhang J, Duan D, Wang Y, Yan Z (2014) A dye-sensitized Pt@UiO-66(Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chem Commun 50(53):7063–7066

    Article  CAS  Google Scholar 

  5. Li L, Liu G, Qi S, Liu X, Gu L, Lou Y, Chen J, Zhao Y (2018) Highly efficient colloidal MnxCd1−xS nanorod solid solution for photocatalytic hydrogen generation. J Mater Chem A 6(46):23683–23689

    Article  CAS  Google Scholar 

  6. Li H, Wang Z, He Y, Meng S, Xu Y, Chen S, Fu X (2019) Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance. J Colloid Interface Sci 535:469–480

    Article  CAS  PubMed  Google Scholar 

  7. Liu H, Xu Z, Zhang Z, Ao D (2016) Novel visible-light driven Mn0. 8Cd0. 2S/g-C3N4 composites: preparation and efficient photocatalytic hydrogen production from water without noble metals. Appl Catal A 518:150–157

    Article  CAS  Google Scholar 

  8. Wang J, Zhang Y, Wang X, Su W (2020) Simultaneous enhancements in photoactivity and anti-photocorrosion of Z-scheme Mn0.25Cd0.75S/WO3 for solar water splitting. Appl Catal B 268:118444

    Article  CAS  Google Scholar 

  9. Wang J, Luo J, Liu D, Chen S, Peng T (2019) One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl Catal B 241:130–140

    Article  CAS  Google Scholar 

  10. Gong H, Zhang X, Wang G, Liu Y, Li Y, Jin Z (2020) Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Mol Catal 485:110832

    Article  CAS  Google Scholar 

  11. Li M, Li J, Jin Z (2020) 0D/2D spatial structure of CdxZn1-xS/Ni-MOF-74 for efficient photocatalytic hydrogen evolution. Dalton Trans 49:5143–5256

    Article  CAS  PubMed  Google Scholar 

  12. Imran M, Yousaf AB, Kasak P, Zeb A (2017) Highly efficient sustainable photocatalytic Z-scheme hydrogen production from an α-Fe2O3 engineered ZnCdS heterostructure. J Catal 353:81–88

    Article  CAS  Google Scholar 

  13. Huang Q-Z, Xiong Y, Zhang Q, Yao H-C, Li Z-J (2017) Noble metal-free MoS2 modified Mn0. 25Cd0. 75S for highly efficient visible-light driven photocatalytic H2 evolution. Appl Catal B 209:514–522

    Article  CAS  Google Scholar 

  14. Yan X, Wang G, Zhang Y, Guo Q, Jin Z (2020) 3D layered nano-flower MoSx anchored with CoP nanoparticles form double proton adsorption site for enhanced photocatalytic hydrogen evolution under visible light driven. Int J Hydrog Energy 45:2578–2592

    Article  CAS  Google Scholar 

  15. Li H, Hao X, Liu Y, Li Y, Jin Z (2020) ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 572:62–73

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Liang X, Wang P, Huang B, Qin X, Zhang X, Dai Y (2017) Highly efficient and noble metal-free NiS modified MnxCd1-xS solid solutions with enhanced photocatalytic activity for hydrogen evolution under visible light irradiation. Appl Catal B 203:282–288

    Article  CAS  Google Scholar 

  17. Zhao Y, Shao C, Lin Z, Jiang S, Song S (2020) Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 16(24):e2000944

    Article  PubMed  Google Scholar 

  18. Li K, Han M, Chen R, Li SL, Xie SL, Mao C, Bu X, Cao XL, Dong LZ, Feng P, Lan YQ (2016) Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv Mater 28(40):8906–8911

    Article  CAS  PubMed  Google Scholar 

  19. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545–4549

    Article  CAS  Google Scholar 

  20. Chen Y, He J, Li J, Mao M, Yan Z, Wang W, Wang J (2016) Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution. Catal Commun 87:1–5

    Article  CAS  Google Scholar 

  21. Zhong W, Wu X, Wang P, Fan J, Yu H (2019) Homojunction CdS photocatalysts with a massive S2–-adsorbed surface phase: One-step facile synthesis and high H2-evolution performance. ACS Sustain Chem Eng 8(1):543–551

    Article  Google Scholar 

  22. Qin J, Lin L, Wang X (2018) A perovskite oxide LaCoO3 cocatalyst for efficient photocatalytic reduction of CO2 with visible light. Chem Commun 54(18):2272–2275

    Article  CAS  Google Scholar 

  23. Tang Y, Zhang D, Qiu X, Zeng L, Huang B, Li H, Pu X, Geng Y (2019) Fabrication of a NiCo2O4/Zn0.1Cd0.9S pn heterojunction photocatalyst with improved separation of charge carriers for highly efficient visible light photocatalytic H2 evolution. J Alloy Compd 809:151855

    Article  CAS  Google Scholar 

  24. Pang X, Guo Y, Zhang Y, Xu B, Qi F (2016) LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism. Chem Eng J 304:897–907

    Article  CAS  Google Scholar 

  25. Zhou X, Qiu Y, Yang G, Ning X, Zhan L, Ma L, Xu X, Luo J (2019) Employing noble-metal-free LaCoO3 as a highly efficient co-catalyst to boost visible-light photocatalytic tetracycline degradation over SnS2. J Taiwan Inst Chem E 100:194–201

    Article  CAS  Google Scholar 

  26. Xu J, Sun C, Wang Z, Hou Y, Ding Z, Wang S (2018) Perovskite oxide LaNiO3 nanoparticles for boosting H2 evolution over commercial CdS with visible light. Chemistry 24(69):18512–18517

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Wang J, Xu N, Wang X, Su W (2020) Ni(OH)2 modified Mn0.5Cd0.5S with efficient photocatalytic H2 evolution activity under visible-light. Int J Hydrog Energy 45(41):21532–21539

    Article  CAS  Google Scholar 

  28. Bao N, Shen L, Takata T, Domen K, Gupta K, Yanagisawa A (2007) Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals. J Phy Chem C 111:17527–17534

    Article  CAS  Google Scholar 

  29. Wang M, Liu Q, Xu N, Su N, Wang X, Su W (2018) An amorphous CoSx modified Mn0.5Cd0.5S solid solution with enhanced visible-light photocatalytic H2-production activity. Catal Sci Technol 8(16):4122–4128

    Article  CAS  Google Scholar 

  30. Guo J, Li P, Yang Z (2019) A novel Z-scheme g-C3N4/LaCoO3 heterojunction with enhanced photocatalytic activity in degradation of tetracycline hydrochloride. Catal Commun 122:63–67

    Article  CAS  Google Scholar 

  31. Jiang X, Gong H, Liu Q, Song M, Huang C (2020) In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light. Appl Catal B 268:118439

    Article  CAS  Google Scholar 

  32. Wang R, Ye C, Wang H, Jiang F (2020) Z-scheme LaCoO3/g-C3N4 for efficient full-spectrum light-simulated solar photocatalytic hydrogen generation. ACS Omega 5(47):30373–30382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao N, Peng J, Liu G, Zhang Y, Lei W, Yin Z, Li J, Zhai M (2018) PVP-capped CdS nanopopcorns with type-II homojunctions for highly efficient visible-light-driven organic pollutant degradation and hydrogen evolution. J Mater Chem A 6(38):18458–18468

    Article  CAS  Google Scholar 

  34. Li Z, Wang X, Wang X, Lin Y, Meng A, Yang L, Li Q (2019) Mn-Cd-S@amorphous-Ni3S2 hybrid catalyst with enhanced photocatalytic property for hydrogen production and electrocatalytic OER. Appl Surf Sci 491:799–806

    Article  CAS  Google Scholar 

  35. Gong H, Wang G, Li H, Jin Z, Guo Q (2020) Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution. Int J Hydrog Energy 45:26733–26745

    Article  CAS  Google Scholar 

  36. Huang Q-Z, Tao Z-J, Ye L-Q, Yao H-C, Li Z-J (2018) Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl Catal B 237:689–698

    Article  CAS  Google Scholar 

  37. Shao Z, Zeng T, He Y, Zhang D, Pu X (2019) A novel magnetically separable CoFe2O4/Cd0.9Zn0.1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation. Chem Eng J 359:485–495

    Article  CAS  Google Scholar 

  38. Luo Y, Zheng Y, Feng X, Lin D, Qian Q, Wang X, Zhang Y, Chen Q, Zhang X (2020) Controllable P doping of the LaCoO3 catalyst for efficient propane oxidation: Optimized surface Co distribution and enhanced oxygen vacancies. ACS Appl Mater Interfaces 12(21):23789–23799

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Pang Q, Song Q, Pan X, Jia L (2015) Novel microbial synthesis of Cu doped LaCoO3 photocatalyst and its high efficient hydrogen production from formaldehyde solution under visible light irradiation. Fuel 140:267–274

    Article  CAS  Google Scholar 

  40. Jia L, Li J, Fang W, Song H, Li Q, Tang Y (2009) Visible-light-induced photocatalyst based on C-doped LaCoO3 synthesized by novel microorganism chelate method. Catal Commun 10(8):1230–1234

    Article  CAS  Google Scholar 

  41. Lu Y, Ma A, Yu Y, Tan R, Liu C, Zhang P, Liu D, Gui J (2018) Engineering oxygen vacancies into LaCoO3 perovskite for efficient electrocatalytic oxygen evolution. ACS Sustain Chem Eng 7(3):2906–2910

    Article  Google Scholar 

  42. Zhou X, Chen Y, Li C, Zhang L, Zhang X, Ning X, Zhan L, Luo J (2019) Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation. Sep Pur Technol 211:179–188

    Article  CAS  Google Scholar 

  43. Chang W, Xue W, Liu E, Fan J, Zhao B (2019) Highly efficient H2 production over NiCo2O4 decorated g-C3N4 by photocatalytic water reduction. Chem Eng J 362:392–401

    Article  CAS  Google Scholar 

  44. Zhang Z, Yin Q, Xu L, Zhai J, Guo C, Niu Y, Zhang L, Li M, Wang H, Guan L, Zhang R, Lu H (2020) Potassium-doped-C3N4/Cd0.5Zn0.5S photocatalysts toward the enhancement of photocatalytic activity under visible-light. J Alloy Compd 816:9

    Article  Google Scholar 

  45. Liu Y, Gong Z, Xie Y, Lv H, Zhang B (2020) Revealing the synergetic effects of graphene and MoS2 on boosted photocatalytic H2 production of Mn0.5Cd0.5S photocatalyst. Appl Surf Sci 505:144637

    Article  CAS  Google Scholar 

  46. Zhang J, Cheng C, Xing F, Chen C, Huang C (2021) 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chem Eng J 414:129157

    Article  CAS  Google Scholar 

  47. Ling F, Anthony O, Xiong Q, Luo M, Pan X, Jia L, Huang J, Sun D, Li Q (2016) PdO/LaCoO3 heterojunction photocatalysts for highly hydrogen production from formaldehyde aqueous solution under visible light. Int J Hydrog Energy 41:6115–6122

    Article  CAS  Google Scholar 

  48. Wang Z, Su B, Xu J, Hou Y, Ding Z (2020) Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. Int J Hydrog Energy 45(7):4113–4121

    Article  CAS  Google Scholar 

  49. Luo L, Wang Y, Huo S, Lv P, Fang J, Yang Y, Fei B (2019) Cu-MOF assisted synthesis of CuS/CdS(H)/CdS(C): Enhanced photocatalytic hydrogen production under visible light. Int J Hydrog Energy 44(59):30965–30973

    Article  CAS  Google Scholar 

  50. Wang X, Liu G, Chen Z-G, Li F, Lu GQ, Cheng H-M (2011) Highly efficient H2 evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing SO32- and S2- ions. J Mater Res 25(1):39–44

    Article  Google Scholar 

  51. Swain G, Sultana S, Parida K (2020) Constructing a novel surfactant-free MoS2 nanosheet modified MgIn2S4 marigold microflower: An efficient visible-light driven 2D–2D p-n heterojunction photocatalyst toward HER and pH regulated NRR. ACS Sustain Chem Eng 8:4848–4862

    Article  CAS  Google Scholar 

  52. Chen Y, Zhao S, Wang X, Peng Q, Lin R, Wang Y, Shen R, Cao X, Zhang L, Zhou G, Li J, Xia A, Li Y (2016) Synergetic integration of Cu1.94S-ZnxCd1-xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J Am Chem Soc 138(13):4286–4289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (22062026). The authors also thank The Yunling Scholar (K264202012420), the Industrialization Cultivation Project (2016CYH04), the Key Projects for Research and Development of Yunnan Province (2018BA065), Key Laboratory of Advanced Materials for Wastewater Treatment of Kunming for financial support, the authors also thank the Advanced Analysis and Measurement Center of Yunnan University for the sample testing service.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Jiang or Jiaqiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 996 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Yang, Y., Jiang, L. et al. Significantly Enhanced Photocatalytic Hydrogen Evolution Under Visible Light Over LaCoO3-Decorated Cubic/Hexagonal Mn0.25Cd0.75S. Catal Lett 152, 659–668 (2022). https://doi.org/10.1007/s10562-021-03660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03660-2

Keywords

Navigation