Skip to main content
Log in

A liquid phase deposited porous flower-like HNaV6O16⋅4H2O film developed for a novel adsorbent to remove Pb2+, Cu2+, Mn2+ and Cd2+

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Heavy metal ion pollution of water resources is becoming increasingly serious, and adsorption is one of the most effective strategies for removing heavy metal ions. In the paper, hydrated hydrogen sodium vanadium oxide (HNaV6O16⋅4H2O) film developed for heavy metal ion adsorption was prepared directly via a low-temperature liquid-phase deposition approach. The prepared film shows an interesting porous flower-like morphology and has large spacing (d = 10.87 Å). The highest adsorption capacity of the obtained HNaV6O16⋅4H2O film for Pb2+, Cu2+, Cd2+ and Mn2+ is 513 mg/g (2565 mg/m2), 430 mg/g (2150 mg/m2), 134 mg/g (875 mg/m2) and 175 mg/g (670 mg/m2), respectively. The adsorption percentage of the sample decreased from 92.2 to 86.3% after 4 cycles. The adsorption process follows the Langmuir adsorption isotherm and the pseudo second-order dynamic model, indicating that heavy metal ion adsorption by the film is a single molecular layer chemical adsorption. In combination with various characterizations and comparison tests of samples after adsorption, the adsorption mechanisms include surface electrostatic attraction, complexation, and cation exchange. The results indicate that the film is a potential material to remove heavy metal ions from the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. X. He, T. Zhang, Q. Xue, Y. Zhou, H. Wang, N.S. Bolan, R. Jiang, D.C.W. Tsang, Enhanced adsorption of Cu(II) and Zn(II) from aqueous solution by polyethyleneimine modified straw hydrochar. Sci. Total. Environ. 778, 146116 (2021)

    Article  CAS  Google Scholar 

  2. A. El-Sikaily, A. El Nemr, A. Khaled, O. Abdelwehab, Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J. Hazard. Mater. 148(1–2), 216–228 (2007)

    Article  CAS  Google Scholar 

  3. T.S. Anirudhan, S. Jalajamony, S.S. Sreekumari, Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Appl. Clay. Sci. 65, 67–71 (2012)

    Article  Google Scholar 

  4. D. Purchase, L.N.L. Scholes, D.M. Revitt, R.B.T. Shutes, Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J. Appl. Microbiol. 106(4), 1163–1174 (2008)

    Article  Google Scholar 

  5. Z. Ahmad, B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, S. Wang, Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 180, 437–449 (2018)

    Article  CAS  Google Scholar 

  6. I. Chakraborty, S.M. Sathe, C.N. Khuman, M.M. Ghangrekar, Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. Mater. Sci. Energy. Technol. 3, 104–115 (2019)

    Google Scholar 

  7. M. Chen, D. Wang, S. Ding, X. Fan, Z. Jin, Y. Wu, Y. Wang, C. Zhang, Zinc pollution in zones dominated by algae and submerged macrophytes in Lake Taihu. Sci. Total. Environ. 670, 361–368 (2019)

    Article  CAS  Google Scholar 

  8. C. McManamon, A.M. Burke, J.D. Holmes, M.A. Morris, Amine-functionalised SBA-15 of tailored pore size for heavy metal adsorption. J. Colloid Interf. Sci. 369(1), 330–337 (2011)

    Article  Google Scholar 

  9. S. Das, V.V. Goud, Characterization of a low-cost adsorbent derived from agro-waste for ranitidine removal. Mater. Sci. Energy Technol. 3, 879–888 (2020)

    CAS  Google Scholar 

  10. K. Yin, Q. Wang, M. Lv, L. Chen, Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553–1563 (2018)

    Article  Google Scholar 

  11. Q. Li, W. Song, M. Sun, J. Li, Z. Yu, Response of Bacillus vallismortis sp. EPS to exogenous sulfur stress/ induction and its adsorption performance on Cu(II). Chemosphere 251, 126343 (2020)

    Article  CAS  Google Scholar 

  12. X. Luo, Z. Zhang, P. Zhou, Y. Liu, G. Ma, Z. Lei, Synergic adsorption of acid blue 80 and heavy metal ions (Cu2+/Ni2+) onto activated carbon and its mechanisms. J. Ind. Eng. Chem. 27, 164–174 (2014)

    Article  Google Scholar 

  13. Z. Guan, J. Lv, P. Bai, X. Guo, Boron removal from aqueous solutions by adsorption—a review. Desalination 383, 29–37 (2015)

    Article  Google Scholar 

  14. Y. Matsui, T. Yoshida, S. Nakao, D.R.U. Knappe, T. Matsushita, Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons. Water Res. 46(15), 4741–4749 (2012)

    Article  CAS  Google Scholar 

  15. E. Padilla-Ortega, R. Leyva-Ramos, J.V. Flores-Cano, Binary adsorption of heavy metals from aqueous solution onto natural clays. Chem. Eng. J. 225, 535–546 (2013)

    Article  CAS  Google Scholar 

  16. Q. Huang, L.X. Zou, P. Lan, C. Yang, Z.Y. Jing, Y.Z. Xu, J.F. Xu, Synthesis of the Y nanometer zeolites from fly ash and its adsorption models for aqueous Cs+ ions. J. Radioanal. Nucl. Chem. 323(1), 65–72 (2019)

    Article  Google Scholar 

  17. D. Panchal, A. Sharma, P. Mondal, Heterolayered TiO2@layered double hydroxide-MoS2 nanostructure for simultaneous adsorption-photocatalysis of co-existing water contaminants. Appl. Sur. Sci. 553, 149577 (2021)

    Article  CAS  Google Scholar 

  18. W. Yu, F. Lian, G. Cui, Z.Q. Liu, N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere 193, 8–16 (2018)

    Article  CAS  Google Scholar 

  19. D.K. Chanda, D. Mukherjee, P.S. Das, C.K. Ghosh, A.K. Mukhopadhyay, Toxic heavy metal ion adsorption kinetics of Mg(OH)2 nanostructures with superb efficacies. Mater. Res. Express. 5(7), 075027 (2018)

    Article  Google Scholar 

  20. A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58, 49–52 (2007)

    Article  CAS  Google Scholar 

  21. L. Bai, L. Jia, Z.D. Yan, Z.C. Liu, Y.Q. Liu, Plasma-etched electrospun nanofiber membrane as adsorbent for dye removal. Chem. Eng. Res. Des 132, 445–451 (2018)

    Article  CAS  Google Scholar 

  22. D.J. Yang, Z.F. Zheng, H.W. Liu, H.Y. Zhu, X.B. Ke, Y. Xu, D. Wu, Y. Sun, Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J. Phys. Chem. C. 112(42), 16275–16280 (2008)

    Article  CAS  Google Scholar 

  23. J.K. Rama, K.N. Ashish, U.K. Moni, P. Anjali, Surfactant bilayer on chitosan bead surface for enhanced Ni(II) adsorption. Sustain. Mater. Technol. 18, e00077 (2018)

    Google Scholar 

  24. Z. Modrzejewska, K. Wladyslaw, Separation of Cr(VI) on chitosan membranes. Ind. Eng. Chem. Res. 38(12), 4946–4950 (2000)

    Article  Google Scholar 

  25. M.U. Tahir, X.T. Su, M. Zhao, Y.N. Liao, R. Wu, D. Chen, Preparation of hydroxypropyl-cyclodextrin-graphene/Fe3O4 and its adsorption properties for heavy metals. Surf. Interfaces. 16, 43–49 (2019)

    Article  CAS  Google Scholar 

  26. H.C. Wang, Z.W. Wang, R.R. Yue, F. Gao, R. Ren, J.F. Wei, X.L. Wang, Z.Y. Kong, Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 384, 121288 (2020)

    Article  CAS  Google Scholar 

  27. J. Chen, H.Y. Xu, J.H. Ruan, Y.M. Xin, Y. Li, D.C. Li, A.G. Wang, D.S. Sun, Preparation and electrochemical performance of binder-free sodium vanadium bronze thin film electrodes based on a low temperature liquid phase deposition method. Mater. Chem. Phys. 249, 122935 (2020)

    Article  CAS  Google Scholar 

  28. S. Kasap, I. kaya, E. Erdem, Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 1(7), 2586–2597 (2019)

    Article  CAS  Google Scholar 

  29. H.Y. Xu, J.H. Ruan, F.L. Liu, D.C. Li, F.J. Zhang, A.G. Wang, D.S. Sun, W.C. Oh, Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs. J. Korean Ceram. Soc. (2021). https://doi.org/10.1007/s43207-021-00127-3

    Article  Google Scholar 

  30. R. Sun, X. Ji, C. Luo, S. Hou, P. Hu, X. Pu, L. Cao, L. Mai, C. Wang, Water-pillared sodium vanadium bronze nanowires for enhanced rechargeable magnesium ion storage. Small 16(30), 2000741 (2020)

    Article  CAS  Google Scholar 

  31. M. Najdoski, V. Koleva, S. Demiri, Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes. Mater. Res. Bull. 47(3), 737–743 (2011)

    Article  Google Scholar 

  32. R. Dobrowolski, A. Szcześ, M. Czemierska, A. Jarosz-Wikołazka, Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour. Technol. 225, 113–120 (2016)

    Article  Google Scholar 

  33. L. Wei, Y. Li, D.R. Noguera, N. Zhao, Y. Song, J. Ding, Q. Zhao, F. Cui, Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: effect of EPS fractional polarity on binding mechanism. J. Hazard. Mater. 321, 473–483 (2016)

    Article  Google Scholar 

  34. J. Mu, F. Teng, H. Miao, Y. Wang, X. Hu, In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel Step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting. Appl. Surf. Sci. 501, 143974 (2020)

    Article  CAS  Google Scholar 

  35. W.J. Lee, J.S. Lee, D. Atarashi, Y.H. Kim, S.H.Lee, Pore structure and possibility of fine dust removal for bottom ash sand. J. Korean Ceram. Soc. 57(4), 378–384 (2020)

    Article  CAS  Google Scholar 

  36. H. Choi, H.J. Kang, M.S. Song, E.D. Jung, J.S. Kim, Solidification of heavy metal ions using magnesia-phosphate cement. J. Korean Ceram. Soc. 48(1), 20–20 (2011)

    Article  CAS  Google Scholar 

  37. S. Tajik, H. Beitollahi, F. Garkani Nejad, I. Sheikhshoaie, A.S. Nugraha, H.W. Jang, Y. Yamauchi, M. Shokouhimehr, Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J. Mater. Chem. A. 9(13), 8195–8220 (2021)

    Article  CAS  Google Scholar 

  38. H. Liu, B. Lian, Quantitative evaluation of different fractions of extracellular polymeric substances derived from Paenibacillus mucilaginosus against the toxicity of gold ions. Colloids Surf. B. 175, 195–201 (2018)

    Article  Google Scholar 

  39. W. Yu, F. Lian, G. Cui, Z. Liu, N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere 193, 8–16 (2017)

    Article  Google Scholar 

  40. F.A. Soria, C.D. Valentin, Binding group of oligonucleotides on TiO2 surfaces: Phosphate anions or nucleobases. Appl. Surf. Sci. 575, 151560 (2021)

    Article  Google Scholar 

  41. F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity. Appl. Surf. Sci. 488, 151–160 (2019)

    Article  CAS  Google Scholar 

  42. J. Kim, J.Y. Jo, I.G. Choi, Y.C. Kim, Search for adsorption geometry of precursor on surface using genetic algorithm: MoO2Cl2 on SiO2 surface. J. Korean Ceram. Soc. 57(6), 669–675 (2020)

    Article  CAS  Google Scholar 

  43. B. Nayebi, K.P. Niavol, B. Nayebi, S. Young Kim, K.T. Nam, H.W. Jang, R.S. Varma, M. Shokouhimehr, Prussian blue-based nanostructured materials: Catalytic applications for environmental remediation and energy conversion. Mol. Catal. 514, 11835 (2021)

    Google Scholar 

  44. P. Tan, Y.Y. Hu, Q. Bi, Competitive adsorption of Cu2+, Cd2+ and Ni2+ from an aqueous solution on graphene oxide membranes. Colloid Surf. A. 509, 56–64 (2016)

    Article  CAS  Google Scholar 

  45. C.H. Xu, Y. Feng, H.R. Li, R.F. Wu, J.R. Ju, S.L. Liu, Y. Yang, B. Wang, Adsorption of heavy metal ions by iron tailings: Behavior, mechanism, evaluation and new perspectives. J. Clean. Prod. 344, 131065 (2022)

    Article  CAS  Google Scholar 

  46. L. Ma, S.M. Isiam, C. Xiao, J. Zhao, H. Liu, M. Yuan, G. Sun, H. Li, S. Ma, M.G. Kanatzidis, Rapid simultaneous removal of toxic anions [HSeO3]-, [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by MoS42- intercalated layered double hydroxide. J. Am. Chem. Soc. 139(36), 12745–12757 (2017)

    Article  CAS  Google Scholar 

  47. A.N.A. Hosain, E. Nemr, E. Sikaily, M.E. Mahmoud, M.F. Amira, Surface modifications of nanochitosan coated magnetic nanoparticles and their applications in Pb (II), Cu (II) and Cd (II). Remov J. Environ. Chem. Eng. 8, 104316 (2020)

    Article  CAS  Google Scholar 

  48. U.T. Uthappa, G. Sriram, O.R. Arvind, S. Kumar, Y.J. Ho, G.M. Neelgund, D. Losic, M.D. Kurkuri, Engineering MIL-100(Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton’s catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes. Appl. Surf. Sci. 528, 146974 (2020)

    Article  CAS  Google Scholar 

  49. C. Liu, T. Wu, P.C. Hsu, J. Xie, J. zhao, Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS Nano 13(6), 6431–6437 (2019)

    Article  CAS  Google Scholar 

  50. J. Sun, F. Lian, Z. Liu, L. Zhu, Z. Song, Biochars derived from various crop straws: characterization and Cd(II) removal potential. Ecotoxicol. Environ. Saf. 106, 226–231 (2014)

    Article  CAS  Google Scholar 

  51. X.J. Tong, J.Y. Li, J.H. Yuan, R.K. Xu, Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 172(2–3), 828–834 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National key R&D program of China (2019YFE03070001), Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyqZD2016150), and the Key Research and Development Projects of Anhui Province (202004b11020033) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Yan Xu or Won-Chun Oh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with this work.

Ethical approval

All data generated or analyzed during this study are included in this published article.

Research involving human and animals’ rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H.Y., Yang, Y.C., Li, D.C. et al. A liquid phase deposited porous flower-like HNaV6O16⋅4H2O film developed for a novel adsorbent to remove Pb2+, Cu2+, Mn2+ and Cd2+. J. Korean Ceram. Soc. 60, 474–487 (2023). https://doi.org/10.1007/s43207-022-00224-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00224-x

Keywords

Navigation